From 1 - 6 / 6
  • Summary The following 6 categories of annual mean salinity were applied delineating the Kattegat and the Baltic Sea into regions with differences in salinity regime (fig. 15): I. Oligohaline I (< 5psu). II. Oligohaline II (5 - 7.5psu). III. Mesohaline I (7.5 - 11psu). IV. Mesohaline II (11 - 18psu). V. Polyhaline (18 - 30psu). VI. Euhaline (>30psu). Description This dataset was produced by NERI, Denmark, for the BSR INTERREG IIIB project BALANCE. Due to the stratification in the Baltic Sea it was decided to use bottom salinity for the development of the benthic marine landscapes and difference in surface to bottom salinity for the pelagic landscapes. The following 6 categories of annual mean salinity were applied delineating the Kattegat and the Baltic Sea into regions with differences in salinity regime (fig. 15): I. Oligohaline I (< 5psu). II. Oligohaline II (5 - 7.5psu). III. Mesohaline I (7.5 - 11psu). IV. Mesohaline II (11 - 18psu). V. Polyhaline (18 - 30psu). VI. Euhaline (>30psu).

  • The data represents the seabed slope of the Baltic Sea and has been derived from a bathymetry dataset. Both datasets have been produced by the BSR INTERREG IIIB project BALANCE. For more information see also the metadata file on bathymetry.

  • Summary Model results of the annual mean bottom current velocity (m/s). Description This dataset shows model results of the annual mean bottom current velocity (m/s). Data source, NERI/Denmark. Currents in the sea can be generated by many different parameters, among which are: I. Tidal motion II. Wind stress III. Density difference due to differences in salinity or temperature IV. Seismic activity and motion of the earth In near shore regions, the wave-induced along shore currents are the dominating currents, whereas in offshore regions, a combination of tidal and meteorological forces is the dominating current generating parameters. Near the sea bottom the friction of the current flow forms a turbulent layer, termed boundary layer, over the seabed. The thickness of this layer ranges from few meters up to several tens of meters. Within this layer the current speed increases nonlinearly with the height above the seabed, being zero at the seabed and maximum at the top of the layer. The variation of the current speed with height above the seabed is called current velocity profile.

  • Summary Model results for the distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance Description This dataset shows model results forthe distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance. From an ecological point of view, available light is one of the primary physical parameters influencing and structuring the biological communities in the marine environment, as it is the driving force behind the primary production by providing the energy for the photosynthesis - energy that ultimately is transferred to other organisms not capable of photosynthesis. The depth of the photic zone is traditionally defined, for benthic plants, as the depth where 1% of the surface irradiance (as measured just below the water surface) is available for photosynthesis. Only two intervals based on light regime were used in the dataset, because they reflect the significant ecological difference between the shallow water depth with the presence of submerged aquatic vegetation, and the deeper waters where fauna (and bacteria) dominate diversity of species, abundance, and biomass. The intervals are: I. The photic zone (where at least 1% of the available light touches the seabed). II. The non-photic zone.The measurements of Secchi Depth used for producing this dataset are not evenly distributed and some areas in the Baltic Proper, Gulf of Riga and southern Baltic are not well covered.

  • Summary This dataset shows model results for the average bottom temperature in the Baltic region in the plant growth season from April to September. Description This dataset shows model results for the average bottom temperature in the Baltic region in the plant growth season from April to September.

  • Summary Marine seabed sediment split into 5 categories in the Kattegat and Baltic Sea (compiled from sediment information from GEUS, GSF and SGU). Description Marine seabed sediment split into 5 categories in the Kattegat and Baltic Sea (compiled from sediment information from GEUS, GSF and SGU). The sediment composition of the seabed is considered essential in marine landscape production as it is one of the primary parameters influencing the biogeographic distribution of marine benthic species and a primary component in shaping the physical structure and function of marine habitats. The resulting classification scheme consists of five sediment classes, which can be extracted from existing data. The sediment classes applied in the mapping and modelling of the Baltic Sea marine landscapes are: I. Bedrock. II. Hard bottom complex, includes patchy hard surfaces and coarse sand (sometimes also clay) to boulders. III. Sand including fine to coarse sand (with gravel exposures). IV. Hard clay sometimes/often/possibly exposed or covered with a thin layer of sand/gravel. V. Mud including gyttja-clay to gyttja-silt. For more details see: BALANCE Interim Report no. 10 "Towards marine landscapes in the Baltic Sea": http://balance-eu.org/xpdf/balance-interim-report-no-10.pdf