From 1 - 10 / 78
  • Potential cumulative impacts of eutrophication and hazardous substances assesses the cumulative potential effect of eutrophication and hazardous substances over all ecosystem components. The evaluation is based on the pressure layer on eutrophication and hazardous substances, combined with information on all ecosystem components (57 layers) included in SPIA for HOLAS 3. The thematic analyses is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral hard substrate” includes classes “Rock and other hard substrate” and “Coarse substrate” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Input of hazardous substances pressure layer is interpolated from CHASE Assessment tool concentration component. The contamination ratio values were calculated with CHASE Assessment tool for hazardous substances monitored in water, sediment and biota. Classified mean contamination ratio was used in the interpolation. Classification is based on the http://stateofthebalticsea.helcom.fi/about-helcom-and-the-assessment/downloads-and-data/. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • Potential cumulative impacts on benthic habitats is based on the same method than http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9477be37-94a9-4201-824a-f079bc27d097, but is focused on physical pressures and benthic habitats. The dataset was created based on separate analysis for potential cumulative impacts on only the benthic habitats, as these are particularly affected by physical pressures. In this case the evaluation was based on pressure layers representing http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ea0ef0fa-0517-40a9-866a-ce22b8948c88 and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/05e325f3-bc30-44a0-8f0b-995464011c82, combined with information on the distribution of eight broad benthic habitat types and five habitat-forming species (http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/363cb353-46da-43f4-9906-7324738fe2c3, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/f9cc7b2c-4080-4b19-8c38-cac87955cb91, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/264ed572-403c-43bd-9707-345de8b9503c, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/822ddece-d96a-4036-9ad8-c4b599776eca and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ca327bb1-d3cb-46c2-8316-f5f62f889090). The potential cumulative impacts has been estimated based on currently best available data, but spatial and temporal gaps may occur in underlying datasets. Please scroll down to "Lineage" and visit http://stateofthebalticsea.helcom.fi/cumulative-impacts/ for more info.

  • Estuaries (according to Habitats Directive Annex I) are coastal inlets that are strongly influenced by freshwater. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and/or aerial photos. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Springtime Chl-a concentration is here used as a proxy for productive surface waters. In the Baltic Sea Impact Index (BSII), areas with high springtime phytoplankton production will be given higher importance, as they are considered important areas for the Baltic Sea food web. In the current map, mean of springtime maximum weekly values (weeks 12-22, years 2003-2011) Chl-a concentration of the surface waters has been used, derived from satellite data (MERIS). Years 2003-2011 have been used, as there is no MERIS data available for years 2012-2016. The data for eastern Baltic Sea is provided by the Finnish Environment Institute (~300m resolution). Outside this high resolution data, MERIS-data downloaded from JRC-database has been used (~4 km resolution, to calculate average of maximum monthly values for April or May for 2003-2011). Both datasets were converted to 1 km x 1 km grid cells.

  • This layer is based on data from the BIAS project representing ambient underwater noise, modelled into a 0.5 km x 0.5 km grid, and representing sound pressure levels at 1/3 octave bands of 125 Hz exceeded at least 5% of the time. Measured and modelled acoustic data is provided as Sound Pressure Level (SPL). The time period for the data is annual values for year 2014. The selected depth interval is 0 m – bottom to represent the ambient underwater noise in the whole water column. The data were normalized setting level 0 at 92 db re 1µPa and level 1 at 127 db re 1µPa.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mud” includes classes “Fine mud”, “Sandy mud” and “Mud to sandy mud” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Sandbanks (according to Habitats Directive Annex I) are areas elevated from their surroundings that consist mainly of sand, but where cobbles and boulders can occur. Distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and only limited ground-truthing has been carried out. Data coverage, accuracy and the methods in obtaining the data vary between countries.