From 1 - 10 / 36
  • This layer is based on data from the BIAS project representing ambient underwater noise, modelled into a 0.5 km x 0.5 km grid, and representing sound pressure levels at 1/3 octave bands of 125 Hz exceeded at least 5% of the time. Measured and modelled acoustic data is provided as Sound Pressure Level (SPL). The time period for the data is annual values for year 2014. The selected depth interval is 0 m – bottom to represent the ambient underwater noise in the whole water column. The data were normalized setting level 0 at 92 db re 1µPa and level 1 at 127 db re 1µPa.

  • Amount of hunted birds (number of birds/area) per year per area (county) is given separately for each target species: common scooter (Melanitta nigra), velvet scoter (Melanitta fusca), eider (Somateri molissima) and long tailed duck (Clangula hymalis). The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Estonia, Finland and Sweden. The activity was declared as not relevant in Germany, Latvia, Lithuania and Poland. For each species, a total number of hunted birds during the time period and a calculated average (hunted birds/year), is given. Data includes a total number (sum) of all hunted birds during the time period per county (total number of hunted birds/ county) and an average for hunted birds annually (hunted individuals/year). Velvet scoter is protected species in Sweden and Finland, and not listed as a game in Estonia. Common scoter is also protected species in Finland, thus hunting data is not available. Attribute specification and units: Country: Country AreaCode: County’s national code Area: County, unit area TOTAL: Total number of hunted birds in 2011-2015 Average: An average of hunted birds in a year (hunted birds/year) 2011_Sco – 2015_Sco: Number of hunted common scoters in 2011-2015 SUM_Sco: Total number of hunted common scoters in 2011-2015 Mean_Sco: An average number of hunted common scoters in a year (hunted individuals/year) 2011_VSco – 2015_VSco: Number of hunted velvet scoters in 2011 - 2015 SUM_Vsco: Total number of hunted velvet scoters in 2011-2015 Mean_Vsco: An average number of hunted velvet scoters in a year (hunted individuals/year) 2011_Eider – 2015_Eider: Number of hunted eiders in 2011 - 2015 SUM_Eider: Total number of hunted eiders in 2011-2015 Mean_Eider: An average number of hunted eiders in a year (hunted individuals/year) 2011_LTDuc – 2015_LTDuc: Number of hunted long tailed ducks in 2011 – 2015 SUM_LTDuck: Total number of hunted long tailed ducks in 2011-2015 Mean_LTDuc: An average number of hunted long tailed ducks in a year (hunted individuals/year) Notes: Notes regarding the data

  • This data set on deposition sites of dredged material (points) reported by HELCOM Contracting parties according to http://www.helcom.fi/Recommendations/Rec%2036-2.pdf for the reporting period 2011-2016. The dataset contains data reported by nationally by nominated experts by HELCOM PRESSURE group for Denmark, Germany, Estonia, Finland, Latvia, Lithuania, Poland, Russia and Sweden.

  • Data shows the extent of land claim (permanent or temporary establishments of the sea) and the type of the construction. The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Finland, Sweden and Poland. The activity was declared as not relevant in Germany, Estonia, Latvia and Lithuanian. From Russia no data was reported. Attribute specification and units: Country: Country Type: Type of construction (land claim) Type_spec: More specified information about the type of land claim Year: Year of construction Estimated: Estimated year of construction from the identification information (environmental permit) given by the country in question Length: Length of the land reclamation (m) Area: Area (km2) of the land claim X_lon: Original Longitude coordinate point (for the data that has been transformed from points into lines) Y_Lat: Original latitude coordinate point (for the data that has been transformed from points into lines)

  • Distribution of eelgrass based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of eelgrass were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Polygon data from Puck Bay (Poland) was digitized based on Polish Marine Atlas and Orlowo cliff area was added based on expert knowledge. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of eelgrass in the Estonian waters) were generalized to 5km x 5km grid cells.

  • The fishing intensity map displays data provided in C-square (0.05 x 0.05 degrees) converted to 1x1 km raster 2011-2016. The value of raster cell is subsurface swept area ratio. The data does not cover Russian waters.

  • Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.

  • This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.

  • This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.

  • Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: - Bridges (2 m) - Cables (operational; 1,5 m) - Coastal defence and flood protection (area of polygon, 50 m for lines) - Dredging (capital dredging, Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 points) - Extraction of sand and gravel - Finfish mariculture (150 m) - Harbours (polygon with 200 m buffer) - Land claim (area of polygon, 30m buffer for lines) - Marinas and leisure harbours (200 m) - Oil platforms (25 m) - Oil terminals and refineries (200 m) - Pipelines (operational; 15 m) - Shellfish mariculture (area of polygon, 150 m points) - Watercourse modification (50 m) - Wind turbines (operational; 30m point location of turbine) The datasets were first processed separately covering the whole Baltic Sea and then merged into one uniform data layer and minimizing the effect of overlapping areas. Polygon areas were clipped with coastline to remove buffered areas that reached to land.