2018
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.
-
Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).
-
This dataset contains modelled small vessel fuel consumption. This describes the geographical distribution of the fuel used by small boats. The total fuel consumption was modelled in SHEBA project to study emissions from pleasure boats. The model is based on locations and berths in marinas and leisure harbours, AIS information, statistics on fuel sale and extensive survey. For 2018 version the layer is weighted with depth, log-transformed and normalised (please see below). This dataset was also used on HOLAS 3.
-
Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.
-
The dataset contains sand and gravel extraction activity during 2011–2015. The dataset is based on data submission by HELCOM Contacting Parties in response to data request. The dataset is quality assured and contains data from all the Baltic Sea countries. Common extraction sites with information on volume of extraction was included in the dataset. The other extraction sites (building sites, exclusive sites) had only summed data for all the sites, as volumes of extraction in specific sites was classified as confidential information. For these sites the volumes was calculated from reported sum of "other extraction areas". The amount was equally divided between corresponding extraction areas. For some common extraction sites a shared amount was reported.
-
The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.
-
Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: - Bridges (2 m) - Cables (operational; 1,5 m) - Coastal defence and flood protection (area of polygon, 50 m for lines) - Dredging (capital dredging, Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 points) - Extraction of sand and gravel - Finfish mariculture (150 m) - Harbours (polygon with 200 m buffer) - Land claim (area of polygon, 30m buffer for lines) - Marinas and leisure harbours (200 m) - Oil platforms (25 m) - Oil terminals and refineries (200 m) - Pipelines (operational; 15 m) - Shellfish mariculture (area of polygon, 150 m points) - Watercourse modification (50 m) - Wind turbines (operational; 30m point location of turbine) The datasets were first processed separately covering the whole Baltic Sea and then merged into one uniform data layer and minimizing the effect of overlapping areas. Polygon areas were clipped with coastline to remove buffered areas that reached to land.
-
This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.
-
The extraction of cod pressure layer is based on two datasets: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/7a1389b3-382a-487f-8888-ac45c94c5a97 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). 2. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/debeafcd-948b-4455-88ae-7a3d1618f5a8 from ICES recreational fisheries reports for 2011-2016, reported per country (only coastal areas included). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² were calculated for both data sets and the results were converted to 1 km x 1 km grid cells. The layers were summed together, log-transformed and normalised to produce the final pressure layer on extraction of cod. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Data set represents dredging activities around the Baltic Sea. The data set contains information about the dredging activity and for some the type (capital, maintenance) and the year of activity as reported by HELCOM Contracting Parties in response to data request. The dredging data is missing from Denmark.
HELCOM Metadata catalogue