2018
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.
-
Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).
-
The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
The dataset contains total landings of cod for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle) under EU Joint Research Centre’s data collection framework for fisheries data. Russian data extracted from ICES annual reports.
-
The map of sprat relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016, (ICES WGBIFS reports), reported as millions of sprat per ICES rectangle. The BIAS surveys cover almost the whole area where sprat is commonly encountered. Outside BIAS area, sprat landings data was used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2015). MAX-value = millions of sprat according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported sprat landings were given the value 0. The abundance values / ICES rectangle were divided by the area of the rectangle to obtain values per 1km2, and then converted to 1 km x 1km grid cells. Values were first log transformed and then normalised.
-
The map of herring relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016 (ICES WGBIFS reports), reported as millions of herring / ICES rectangle. Also herring landings data were used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = millions of herring according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported herring landings were given the value 0. The relative abundance values in each ICES rectangle were divided by the area of the rectangle to obtain values per 1km2. If the values in small coastal ICES rectangles (outside BIAS area) became unrealistically large due to high herring landings, the value of the neighboring rectangle was given. The final layer was converted to 1 km x 1km grid cells. Values were first log transformed and normalized.
-
'Availability of deep water habitat, based on occurrence of H2S' layer describes the suitability of the bottom areas for the Baltic Sea biota, with regard to oxygen conditions of the near bottom waters. The data used to produce the layer was received from Leibniz-Institut für Ostseeforschung Warnemünde (IOW): - areas (polygons) with hydrogen sulfide (H2S) based on point measurements and modelling. Five time periods / year, for years 2011-2016 (altogether 30 layers). The polygons were converted to raster layers in a way, that for each time period (6 years, 5 time periods each year), areas with H2S got a value 0, other areas got the value 1. All layers were summed, (representing 6 years, 5 time periods each year, maximum value 30) and data was normalised. For more detailed information on the data used, please see Feistel et al. 2016.
-
The dataset contains sand and gravel extraction activity during 2011–2015. The dataset is based on data submission by HELCOM Contacting Parties in response to data request. The dataset is quality assured and contains data from all the Baltic Sea countries. Common extraction sites with information on volume of extraction was included in the dataset. The other extraction sites (building sites, exclusive sites) had only summed data for all the sites, as volumes of extraction in specific sites was classified as confidential information. For these sites the volumes was calculated from reported sum of "other extraction areas". The amount was equally divided between corresponding extraction areas. For some common extraction sites a shared amount was reported.
-
The extraction of cod pressure layer is based on two datasets: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/7a1389b3-382a-487f-8888-ac45c94c5a97 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). 2. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/debeafcd-948b-4455-88ae-7a3d1618f5a8 from ICES recreational fisheries reports for 2011-2016, reported per country (only coastal areas included). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² were calculated for both data sets and the results were converted to 1 km x 1 km grid cells. The layers were summed together, log-transformed and normalised to produce the final pressure layer on extraction of cod. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
HELCOM Metadata catalogue