From 1 - 10 / 36
  • Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).

  • The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • The dataset contains total landings of sprat for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle) under EU Joint Research Centre’s data collection framework for fisheries data. Russian data extracted from ICES annual reports.

  • Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.

  • Amount of hunted birds (number of birds/area) per year per area (county) is given separately for each target species: common scooter (Melanitta nigra), velvet scoter (Melanitta fusca), eider (Somateri molissima) and long tailed duck (Clangula hymalis). The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Estonia, Finland and Sweden. The activity was declared as not relevant in Germany, Latvia, Lithuania and Poland. For each species, a total number of hunted birds during the time period and a calculated average (hunted birds/year), is given. Data includes a total number (sum) of all hunted birds during the time period per county (total number of hunted birds/ county) and an average for hunted birds annually (hunted individuals/year). Velvet scoter is protected species in Sweden and Finland, and not listed as a game in Estonia. Common scoter is also protected species in Finland, thus hunting data is not available. Attribute specification and units: Country: Country AreaCode: County’s national code Area: County, unit area TOTAL: Total number of hunted birds in 2011-2015 Average: An average of hunted birds in a year (hunted birds/year) 2011_Sco – 2015_Sco: Number of hunted common scoters in 2011-2015 SUM_Sco: Total number of hunted common scoters in 2011-2015 Mean_Sco: An average number of hunted common scoters in a year (hunted individuals/year) 2011_VSco – 2015_VSco: Number of hunted velvet scoters in 2011 - 2015 SUM_Vsco: Total number of hunted velvet scoters in 2011-2015 Mean_Vsco: An average number of hunted velvet scoters in a year (hunted individuals/year) 2011_Eider – 2015_Eider: Number of hunted eiders in 2011 - 2015 SUM_Eider: Total number of hunted eiders in 2011-2015 Mean_Eider: An average number of hunted eiders in a year (hunted individuals/year) 2011_LTDuc – 2015_LTDuc: Number of hunted long tailed ducks in 2011 – 2015 SUM_LTDuck: Total number of hunted long tailed ducks in 2011-2015 Mean_LTDuc: An average number of hunted long tailed ducks in a year (hunted individuals/year) Notes: Notes regarding the data

  • Data set represents dredging activities around the Baltic Sea. The data set contains information about the dredging activity and for some the type (capital, maintenance) and the year of activity as reported by HELCOM Contracting Parties in response to data request. The dredging data is missing from Denmark.

  • Distribution of eelgrass based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of eelgrass were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Polygon data from Puck Bay (Poland) was digitized based on Polish Marine Atlas and Orlowo cliff area was added based on expert knowledge. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of eelgrass in the Estonian waters) were generalized to 5km x 5km grid cells.

  • This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The abundance of harbour porpoise is presented using 4 abundance classes. The classification is based on expert consultation and information from scientific literature (e.g. Sveegaard et al. 2011, Viquerat et al. 2014). The class borders are defined by expert opinion and generalizing the data gathered and modelled in SAMBAH project. For the Baltic Proper the SAMBAH results have been used to delineate the class borders: 20% probability of detection during May-October has been used to define the area of “common occurrence and reproduction”, and the 20% probability of detection during November-April has been used to define the “regular occurrence, no regular reproduction” area. Please note: The applied spatial scale includes lagoons and estuaries of the inner coastal waters (e.g. Szczecin Lagoon, Jasmund lagoon) where harbour porpoises do not or only exceptionally occur unlike the map suggests.

  • Data set represents dredging activities around the Baltic Sea. The dataset contains information about the dredging activity and for some the type (capital, maintenance) and the year of activity as reported by HELCOM Contracting Parties in response to data request. The dredging data is missing from Denmark.

  • Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.