2018
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
-
This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.
-
Baltic International Trawl Survey (BITS) data (2011-2016) from ICES DATRAS database was used as a base to create a map of cod relative abundance (quarter 1 data, CPUE values per ICES subdivision). Cod = 30cm was included. For ICES rectangles surveyed by BITS, values shown are the mean CPUE per ICES subdivision based on BITS data, average for 2011-2016. For ICES rectangles not surveyed by BITS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = CPUE according to BITS in the ICES rectangle with highest landings. ICES rectangles outside the BITS survey area with no reported cod landings were given the value 0. Values were first log transformed and then normalized.
-
The dataset contains total landings of herring for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle) under EU Joint Research Centre’s data collection framework for fisheries data. Russian data extracted from ICES annual reports.
-
Amount of hunted birds (number of birds/area) per year per area (county) is given separately for each target species: common scooter (Melanitta nigra), velvet scoter (Melanitta fusca), eider (Somateri molissima) and long tailed duck (Clangula hymalis). The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Estonia, Finland and Sweden. The activity was declared as not relevant in Germany, Latvia, Lithuania and Poland. For each species, a total number of hunted birds during the time period and a calculated average (hunted birds/year), is given. Data includes a total number (sum) of all hunted birds during the time period per county (total number of hunted birds/ county) and an average for hunted birds annually (hunted individuals/year). Velvet scoter is protected species in Sweden and Finland, and not listed as a game in Estonia. Common scoter is also protected species in Finland, thus hunting data is not available. Attribute specification and units: Country: Country AreaCode: County’s national code Area: County, unit area TOTAL: Total number of hunted birds in 2011-2015 Average: An average of hunted birds in a year (hunted birds/year) 2011_Sco – 2015_Sco: Number of hunted common scoters in 2011-2015 SUM_Sco: Total number of hunted common scoters in 2011-2015 Mean_Sco: An average number of hunted common scoters in a year (hunted individuals/year) 2011_VSco – 2015_VSco: Number of hunted velvet scoters in 2011 - 2015 SUM_Vsco: Total number of hunted velvet scoters in 2011-2015 Mean_Vsco: An average number of hunted velvet scoters in a year (hunted individuals/year) 2011_Eider – 2015_Eider: Number of hunted eiders in 2011 - 2015 SUM_Eider: Total number of hunted eiders in 2011-2015 Mean_Eider: An average number of hunted eiders in a year (hunted individuals/year) 2011_LTDuc – 2015_LTDuc: Number of hunted long tailed ducks in 2011 – 2015 SUM_LTDuck: Total number of hunted long tailed ducks in 2011-2015 Mean_LTDuc: An average number of hunted long tailed ducks in a year (hunted individuals/year) Notes: Notes regarding the data
-
The fishing intensity map displays data provided in C-square (0.05 x 0.05 degrees) converted to 1x1 km raster 2011-2016. The value of raster cell is subsurface swept area ratio. The data does not cover Russian waters.
-
This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.
-
Data shows the extent of land claim (permanent or temporary establishments of the sea) and the type of the construction. The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Finland, Sweden and Poland. The activity was declared as not relevant in Germany, Estonia, Latvia and Lithuanian. From Russia no data was reported. Attribute specification and units: Country: Country Type: Type of construction (land claim) Type_spec: More specified information about the type of land claim Year: Year of construction Estimated: Estimated year of construction from the identification information (environmental permit) given by the country in question Length: Length of the land reclamation (m) Area: Area (km2) of the land claim X_lon: Original Longitude coordinate point (for the data that has been transformed from points into lines) Y_Lat: Original latitude coordinate point (for the data that has been transformed from points into lines)
-
Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.
-
The map of herring relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016 (ICES WGBIFS reports), reported as millions of herring / ICES rectangle. Also herring landings data were used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = millions of herring according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported herring landings were given the value 0. The relative abundance values in each ICES rectangle were divided by the area of the rectangle to obtain values per 1km2. If the values in small coastal ICES rectangles (outside BIAS area) became unrealistically large due to high herring landings, the value of the neighboring rectangle was given. The final layer was converted to 1 km x 1km grid cells. Values were first log transformed and normalized.
HELCOM Metadata catalogue