2018
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
-
Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).
-
The dataset contains sand and gravel extraction activity during 2011–2015. The dataset is based on data submission by HELCOM Contacting Parties in response to data request. The dataset is quality assured and contains data from all the Baltic Sea countries. Common extraction sites with information on volume of extraction was included in the dataset. The other extraction sites (building sites, exclusive sites) had only summed data for all the sites, as volumes of extraction in specific sites was classified as confidential information. For these sites the volumes was calculated from reported sum of "other extraction areas". The amount was equally divided between corresponding extraction areas. For some common extraction sites a shared amount was reported.
-
Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: - Bridges (2 m) - Cables (operational; 1,5 m) - Coastal defence and flood protection (area of polygon, 50 m for lines) - Dredging (capital dredging, Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 points) - Extraction of sand and gravel - Finfish mariculture (150 m) - Harbours (polygon with 200 m buffer) - Land claim (area of polygon, 30m buffer for lines) - Marinas and leisure harbours (200 m) - Oil platforms (25 m) - Oil terminals and refineries (200 m) - Pipelines (operational; 15 m) - Shellfish mariculture (area of polygon, 150 m points) - Watercourse modification (50 m) - Wind turbines (operational; 30m point location of turbine) The datasets were first processed separately covering the whole Baltic Sea and then merged into one uniform data layer and minimizing the effect of overlapping areas. Polygon areas were clipped with coastline to remove buffered areas that reached to land.
-
The map of herring relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016 (ICES WGBIFS reports), reported as millions of herring / ICES rectangle. Also herring landings data were used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = millions of herring according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported herring landings were given the value 0. The relative abundance values in each ICES rectangle were divided by the area of the rectangle to obtain values per 1km2. If the values in small coastal ICES rectangles (outside BIAS area) became unrealistically large due to high herring landings, the value of the neighboring rectangle was given. The final layer was converted to 1 km x 1km grid cells. Values were first log transformed and normalized.
-
The dataset contains total landings of herring for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle) under EU Joint Research Centre’s data collection framework for fisheries data. Russian data extracted from ICES annual reports.
-
Concentration of phosphorus pressure layer is interpolated from annual seasonal average of total phosphorus measurements from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).
-
This layer is based on data from the BIAS project representing ambient underwater noise, modelled into a 0.5 km x 0.5 km grid, and representing sound pressure levels at 1/3 octave bands of 125 Hz exceeded at least 5% of the time. Measured and modelled acoustic data is provided as Sound Pressure Level (SPL). The time period for the data is annual values for year 2014. The selected depth interval is 0 m – bottom to represent the ambient underwater noise in the whole water column. The data were normalized setting level 0 at 92 db re 1µPa and level 1 at 127 db re 1µPa.
-
The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.
HELCOM Metadata catalogue