From 1 - 10 / 78
  • Submarine structures made by leaking gases (according to Habitats Directive Annex I) are also known as “bubbling reefs”. These formations support a zonation of diverse benthic communities consisting of algae and/or invertebrate specialists of hard marine substrates different to that of the surrounding habitat. The distribution map is based on data submission by HELCOM contracting parties. Only Sweden and Denmark reported occurrences of submarine structures made by leaking gases.

  • The seals' distribution maps show the distribution and abundance of grey, harbour and ringed seals across the Baltic Sea. The ecosystem component maps on mammals' distribution were drafted by EG MAMA harbour porpoise and seal distribution teams. The maps were prepared as expert-derived distribution categories to be used in the HELCOM Third Holistic Assessment of the Ecosystem health of the Baltic Sea.

  • This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The ecosystem component maps on mammals distribution were drafted by EG MAMA harbour porpoise and seals distribution teams. The dataset was created to be used in the HELCOM Third Holistic Assessment of the Ecosystem health of the Baltic Sea. The methodology report can be found in https://dce2.au.dk/pub/TR240.pdf

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mixed substrate” includes classes “mixed sediment” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral sand” includes classes “Sand” and “Muddy sand” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Sandbanks (according to Habitats Directive Annex I) are areas elevated from their surroundings that consist mainly of sand, but where cobbles and boulders can occur. Distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and only limited ground-truthing has been carried out. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • Raster grid of the Baltic Sea bathymetry computed with ArcGIS Spatial Analyst (KRIGING) from the original Digital Topography of the Baltic Sea (IOWTOPO) database produced by the Baltic Sea Research Institute of Warnemunde. Output resolution of the grid is 250 m, data is projected into ERTS89_LAEA CRS (Lambert Azimuthal Equal Area projection, ETRS89 datum), file format is Erdas Imagine (IMG), data format is continuous, float.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mud” includes classes “Fine mud”, “Sandy mud” and “Mud to sandy mud” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Baltic International Trawl Survey (BITS) data (2011-2016) from ICES DATRAS database was used as a base to create a map of cod relative abundance (quarter 1 data, CPUE values per ICES subdivision). Cod = 30cm was included. For ICES rectangles surveyed by BITS, values shown are the mean CPUE per ICES subdivision based on BITS data, average for 2011-2016. For ICES rectangles not surveyed by BITS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = CPUE according to BITS in the ICES rectangle with highest landings. ICES rectangles outside the BITS survey area with no reported cod landings were given the value 0. Values were first log transformed and then normalized.