From 1 - 10 / 78
  • Sandbanks (according to Habitats Directive Annex I) are areas elevated from their surroundings that consist mainly of sand, but where cobbles and boulders can occur. Distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and only limited ground-truthing has been carried out. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Essential fish habitat (EFH) map on Potential spawning areas for sprat was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ Sprat (Sprattus sprattus) occurs in the entire Baltic Sea, and mainly in open sea areas. It is assessed as a single stock in the Baltic Sea within fisheries management. Sprat eggs are pelagic, and sprat spawning is well known from the deep basins in the central Baltic, where it typically occurs from February to August. Further north, spawning starts later in the year, and is less certain. Recent fisheries surveys indicate that sprat spawning does no longer occur in the Gulf of Finland. Sprat spawning areas were delineated using environmental variables due to lack of coherent field data across the Baltic Sea countries. “Potential sprat spawning areas” were delineated as areas with salinity > 6 and water depth > 30 m, but for the Arcona basin depth > 20 m was used (Grauman, 1980, Bauman et al. 2006, Voss et al. 2012). “High probability spawning areas” were delineated for areas deeper than 70 m. Stock: Sprat in subdivisions 22-32 (ICES) EFH type: Potential spawning areas Approach: Environmental envelope, corrected for areas 20-40 m south of Bornholm. Variables and thresholds: Potential spawning area: Depth > 30 m, Salinity > 6 (annual average) High probability spawning area: Depth >70 m, Salinity > 6 (annual average) Quality: The map is based on literature and environmental variables, not actual data on sprat spawning. The map might overestimate the spawning area west and north of Gotland. The data layers on environmental variables are based on modelling. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References: - Baumann, H, H Hinrichsen, C Mollmann, F Koster, A Malzahn, and A Temming (2006) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) in tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Canadian Journal of Fisheries and Aquatic Science 63:2191-2201 - Grauman GB (1980) Long term changes in the abundance data of eggs and larvae of sprat in the Baltic Sea. Fisheries research in the Baltic Sea, Riga. 15:138-150 (in Russian) - HELCOM (2018) Outcome of the regional expert workshop on essential fish habitats, organized by Pan Baltic Scope project and HELCOM (HELCOM Pan Baltic Scope EFH WS 1-2018) - Voss R, MA Peck, HH Hinrichsen, C Clemmesen, H Baumann, D Stepputis, M Bernreuther, JO Schmidt, A Temming, and FW Köster (2012) Recruitment processes in Baltic sprat - A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography 107:61-79

  • This map presents the Special Protection Areas (SPAs) with reported wintering areas for birds. The spatial data on SPAs were gathered from the HELCOM contracting parties by Lund University, Sweden. In the data, the countries also indicated whether the sites were designated mainly due to wintering or breeding birds in the area. For Denmark, the information was obtained from standard forms for Natura 2000 sites. For Denmark, the data was updated after review process 20 February 2017. For Germany, the areas that were reported as “NA”(=information not available) were included in both breeding and wintering area maps. Many of the SPAs are both wintering and breeding areas. For the Baltic Sea Impact Index, the data was converted to 1 km x 1km grid cells.

  • This dataset contains modelled small vessel fuel consumption. This describes the geographical distribution of the fuel used by small boats. The total fuel consumption was modelled in SHEBA project to study emissions from pleasure boats. The model is based on locations and berths in marinas and leisure harbours, AIS information, statistics on fuel sale and extensive survey. For 2018 version the layer is weighted with depth, log-transformed and normalised (please see below). This dataset was also used on HOLAS 3.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mud” includes classes “Fine mud”, “Sandy mud” and “Mud to sandy mud” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Summary Model results for the distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance Description This dataset shows model results forthe distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance. From an ecological point of view, available light is one of the primary physical parameters influencing and structuring the biological communities in the marine environment, as it is the driving force behind the primary production by providing the energy for the photosynthesis - energy that ultimately is transferred to other organisms not capable of photosynthesis. The depth of the photic zone is traditionally defined, for benthic plants, as the depth where 1% of the surface irradiance (as measured just below the water surface) is available for photosynthesis. Only two intervals based on light regime were used in the dataset, because they reflect the significant ecological difference between the shallow water depth with the presence of submerged aquatic vegetation, and the deeper waters where fauna (and bacteria) dominate diversity of species, abundance, and biomass. The intervals are: I. The photic zone (where at least 1% of the available light touches the seabed). II. The non-photic zone.The measurements of Secchi Depth used for producing this dataset are not evenly distributed and some areas in the Baltic Proper, Gulf of Riga and southern Baltic are not well covered.

  • The pressure layer represents biological pressure caused by introduction of non-indigenous species. The data is obtained from core indicator Trend in the arrival of new non-indigenous species (BSEP 129b: http://www.helcom.fi/Lists/Publications/BSEP129B.pdf). For the Baltic Sea Impact Index, the layer was normalized.

  • Potential cumulative impacts on benthic habitats is based on the same method than http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9477be37-94a9-4201-824a-f079bc27d097, but is focused on physical pressures and benthic habitats. The dataset was created based on separate analysis for potential cumulative impacts on only the benthic habitats, as these are particularly affected by physical pressures. In this case the evaluation was based on pressure layers representing http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ea0ef0fa-0517-40a9-866a-ce22b8948c88 and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/05e325f3-bc30-44a0-8f0b-995464011c82, combined with information on the distribution of eight broad benthic habitat types and five habitat-forming species (http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/363cb353-46da-43f4-9906-7324738fe2c3, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/f9cc7b2c-4080-4b19-8c38-cac87955cb91, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/264ed572-403c-43bd-9707-345de8b9503c, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/822ddece-d96a-4036-9ad8-c4b599776eca and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ca327bb1-d3cb-46c2-8316-f5f62f889090). The potential cumulative impacts has been estimated based on currently best available data, but spatial and temporal gaps may occur in underlying datasets. Please scroll down to "Lineage" and visit http://stateofthebalticsea.helcom.fi/cumulative-impacts/ for more info.