TIFF
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Scale
Resolution
-
This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.
-
The pressure layer represents biological pressure caused by introduction of non-indigenous species. The data is obtained from core indicator Trend in the arrival of new non-indigenous species (BSEP 129b: http://www.helcom.fi/Lists/Publications/BSEP129B.pdf). For the Baltic Sea Impact Index, the layer was normalized.
-
The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
The extraction of herring data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/a3b67a55-7c1e-469e-b692-58c4e7b79279 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of herring. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Potential cumulative impacts of eutrophication and hazardous substances assesses the cumulative potential effect of eutrophication and hazardous substances over all ecosystem components. The evaluation is based on the pressure layer on eutrophication and hazardous substances, combined with information on all ecosystem components (57 layers) included in SPIA for HOLAS 3. The thematic analyses is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.
-
This dataset is built from the following Human activities dataset: • Hunting of seals The number of hunted seals (see separate metadata on hunting of seals) were averaged over 2011-2014 separately for grey seals, ringed seals and harbour seals (e.g. number of hunted grey seals / year). In Sweden the numbers of hunted grey seals in 2011 (74) were reported for the whole Swedish territorial waters), but here the numbers were set only to Swedish Gulf of Bothnia, as corresponding numbers were reported there in 2013 (75) and 2014 (65). The area of the reporting unit was used to calculate the number of hunted seals / km2 and the data was converted to 1km x 1km grid. For the Baltic Sea Impact Index, the values were normalized. Normalized value 0.5 was set to the level of quota for hunting of seal species in the Baltic Sea. The following quotas for hunting were used: Grey seal: 2000, Ringed seal: 350, Harbour seal 230.
-
The seals' distribution maps show the distribution and abundance of grey, harbour and ringed seals across the Baltic Sea. The ecosystem component maps on mammals' distribution were drafted by EG MAMA harbour porpoise and seal distribution teams. The maps were prepared as expert-derived distribution categories to be used in the HELCOM Third Holistic Assessment of the Ecosystem health of the Baltic Sea.
-
Summary This dataset shows model results for the average bottom temperature in the Baltic region in the plant growth season from April to September. Description This dataset shows model results for the average bottom temperature in the Baltic region in the plant growth season from April to September.
-
Input of hazardous substances pressure layer is interpolated from CHASE Assessment tool concentration component. The contamination ratio values were calculated with CHASE Assessment tool for hazardous substances monitored in water, sediment and biota. Classified mean contamination ratio was used in the interpolation. Classification is based on the http://stateofthebalticsea.helcom.fi/about-helcom-and-the-assessment/downloads-and-data/. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Input of heat pressure dataset contains delta heat values from warm water discharge of - Discharge of warm water from nuclear power plants - Fossil fuel energy production. The Discharge of warm water from nuclear power plants was requested from HELCOM Contracting Parties. Average temperature change of the cooling water (°C) and amount of cooling water (m3) was used to calculate the heat load in TWh. No data on heat load was available for the Leningrad nuclear power plant; therefore the average heat load (TWh) of discharge of warm water from nuclear power plants was given. No heat load information was available for fossil fuel energy production sites. Heat load of 1 (TWh) was given to all production sites, based on average heat load of individual production site in Helsinki from recent years. 1 km buffer was used for both datasets with steep decline around the outlet. Overlapping areas were summed. Heat load from both layers were summed and the layer was normalized.