TIFF
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Scale
Resolution
-
The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). For perch, species distribution modelling studies (Snickars et al. 2010, Bergström et al. 2013, Sundblad et al. 2013) have shown the importance of suitable environmental conditions for reproduction. Due to lack of coherent data on perch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for perch. The distribution area or perch recruitment is delineated by selecting areas where depth < 4 m (For Danish waters < 3 m), logged exposure < 5 (exposure model described in Isæus 2004), and salinity < 10 PSU. The threshold values have been obtained from literature (Snickars et al. 2010, Bergström et al. 2013, Skovrind et al. 2013, Sundblad et al. 2013). Relatively “loose” thresholds have been used, to rather overestimate than underestimate the recruitment area (precautionary approach). Along the Finnish coastline a national model has been used (Kallasvuo et al. 2016), with suitable environments for perch recruitment generalized to 1 km x 1 km grid.
-
Distribution of Charophytes (Chara spp., Nitella spp., Nitellopsis spp., Tolypella spp.) mainly based on data submission by HELCOM contracting parties. Submitted point data was originally gathered in national mapping and monitoring campaigns, or for scientific research. Also scientific publications were used to complement the data (in Curonian, Vistula and Szczechin lagoons, see reference list). Polygon data from Poland was digitized based on Polish Marine Atlas. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Charophytes) were generalized to 5km x 5km grid cells.
-
Lagoons are expanses of shallow coastal waters, wholly or partially separated from the sea by sandbanks or shingle, or by rocks. Salinity may vary from brackish water to hypersalinity depending on rainfall, evaporation and addition of fresh seawater from storms, temporary flooding, or tidal exchange. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.
-
This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The abundance of harbour porpoise is presented using 4 abundance classes. The classification is based on expert consultation and information from scientific literature (e.g. Sveegaard et al. 2011, Viquerat et al. 2014). The class borders are defined by expert opinion and generalizing the data gathered and modelled in SAMBAH project. For the Baltic Proper the SAMBAH results have been used to delineate the class borders: 20% probability of detection during May-October has been used to define the area of “common occurrence and reproduction”, and the 20% probability of detection during November-April has been used to define the “regular occurrence, no regular reproduction” area. Please note: The applied spatial scale includes lagoons and estuaries of the inner coastal waters (e.g. Szczecin Lagoon, Jasmund lagoon) where harbour porpoises do not or only exceptionally occur unlike the map suggests.
-
Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral hard substrate” includes classes “Rock and other hard substrate” and “Coarse substrate” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
Estuaries (according to Habitats Directive Annex I) are coastal inlets that are strongly influenced by freshwater. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and/or aerial photos. Data coverage, accuracy and the methods in obtaining the data vary between countries.
-
Distribution of Fucus sp. based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Fucus were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (Fucus points and the raster presenting predicted presence of Fucus) were generalized to 5km x 5km grid cells.
-
Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.
-
Springtime Chl-a concentration is here used as a proxy for productive surface waters. In the Baltic Sea Impact Index (BSII), areas with high springtime phytoplankton production will be given higher importance, as they are considered important areas for the Baltic Sea food web. In the current map, mean of springtime maximum weekly values (weeks 12-22, years 2003-2011) Chl-a concentration of the surface waters has been used, derived from satellite data (MERIS). Years 2003-2011 have been used, as there is no MERIS data available for years 2012-2016. The data for eastern Baltic Sea is provided by the Finnish Environment Institute (~300m resolution). Outside this high resolution data, MERIS-data downloaded from JRC-database has been used (~4 km resolution, to calculate average of maximum monthly values for April or May for 2003-2011). Both datasets were converted to 1 km x 1 km grid cells.
HELCOM Metadata catalogue