From 1 - 10 / 78
  • Sandbanks (according to Habitats Directive Annex I) are areas elevated from their surroundings that consist mainly of sand, but where cobbles and boulders can occur. Distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and only limited ground-truthing has been carried out. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.

  • Potential cumulative impacts of eutrophication and hazardous substances assesses the cumulative potential effect of eutrophication and hazardous substances over all ecosystem components. The evaluation is based on the pressure layer on eutrophication and hazardous substances, combined with information on all ecosystem components (57 layers) included in SPIA for HOLAS 3. The thematic analyses is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • Distribution of Charophytes (Chara spp., Nitella spp., Nitellopsis spp., Tolypella spp.) mainly based on data submission by HELCOM contracting parties. Submitted point data was originally gathered in national mapping and monitoring campaigns, or for scientific research. Also scientific publications were used to complement the data (in Curonian, Vistula and Szczechin lagoons, see reference list). Polygon data from Poland was digitized based on Polish Marine Atlas. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Charophytes) were generalized to 5km x 5km grid cells.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral sand” includes classes “Sand” and “Muddy sand” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Essential fish habitat (EFH) map on Potential spawning areas for sprat was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ Sprat (Sprattus sprattus) occurs in the entire Baltic Sea, and mainly in open sea areas. It is assessed as a single stock in the Baltic Sea within fisheries management. Sprat eggs are pelagic, and sprat spawning is well known from the deep basins in the central Baltic, where it typically occurs from February to August. Further north, spawning starts later in the year, and is less certain. Recent fisheries surveys indicate that sprat spawning does no longer occur in the Gulf of Finland. Sprat spawning areas were delineated using environmental variables due to lack of coherent field data across the Baltic Sea countries. “Potential sprat spawning areas” were delineated as areas with salinity > 6 and water depth > 30 m, but for the Arcona basin depth > 20 m was used (Grauman, 1980, Bauman et al. 2006, Voss et al. 2012). “High probability spawning areas” were delineated for areas deeper than 70 m. Stock: Sprat in subdivisions 22-32 (ICES) EFH type: Potential spawning areas Approach: Environmental envelope, corrected for areas 20-40 m south of Bornholm. Variables and thresholds: Potential spawning area: Depth > 30 m, Salinity > 6 (annual average) High probability spawning area: Depth >70 m, Salinity > 6 (annual average) Quality: The map is based on literature and environmental variables, not actual data on sprat spawning. The map might overestimate the spawning area west and north of Gotland. The data layers on environmental variables are based on modelling. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References: - Baumann, H, H Hinrichsen, C Mollmann, F Koster, A Malzahn, and A Temming (2006) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) in tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Canadian Journal of Fisheries and Aquatic Science 63:2191-2201 - Grauman GB (1980) Long term changes in the abundance data of eggs and larvae of sprat in the Baltic Sea. Fisheries research in the Baltic Sea, Riga. 15:138-150 (in Russian) - HELCOM (2018) Outcome of the regional expert workshop on essential fish habitats, organized by Pan Baltic Scope project and HELCOM (HELCOM Pan Baltic Scope EFH WS 1-2018) - Voss R, MA Peck, HH Hinrichsen, C Clemmesen, H Baumann, D Stepputis, M Bernreuther, JO Schmidt, A Temming, and FW Köster (2012) Recruitment processes in Baltic sprat - A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography 107:61-79

  • This map presents the Special Protection Areas (SPAs) with reported wintering areas for birds. The spatial data on SPAs were gathered from the HELCOM contracting parties by Lund University, Sweden. In the data, the countries also indicated whether the sites were designated mainly due to wintering or breeding birds in the area. For Denmark, the information was obtained from standard forms for Natura 2000 sites. For Denmark, the data was updated after review process 20 February 2017. For Germany, the areas that were reported as “NA”(=information not available) were included in both breeding and wintering area maps. Many of the SPAs are both wintering and breeding areas. For the Baltic Sea Impact Index, the data was converted to 1 km x 1km grid cells.

  • Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.

  • This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.