TIFF
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Scale
Resolution
-
Potential cumulative impacts on benthic habitats is based on the same method than http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9477be37-94a9-4201-824a-f079bc27d097, but is focused on physical pressures and benthic habitats. The dataset was created based on separate analysis for potential cumulative impacts on only the benthic habitats, as these are particularly affected by physical pressures. In this case the evaluation was based on pressure layers representing http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ea0ef0fa-0517-40a9-866a-ce22b8948c88 and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/05e325f3-bc30-44a0-8f0b-995464011c82, combined with information on the distribution of eight broad benthic habitat types and five habitat-forming species (http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/363cb353-46da-43f4-9906-7324738fe2c3, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/f9cc7b2c-4080-4b19-8c38-cac87955cb91, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/264ed572-403c-43bd-9707-345de8b9503c, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/822ddece-d96a-4036-9ad8-c4b599776eca and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ca327bb1-d3cb-46c2-8316-f5f62f889090). The potential cumulative impacts has been estimated based on currently best available data, but spatial and temporal gaps may occur in underlying datasets. Please scroll down to "Lineage" and visit http://stateofthebalticsea.helcom.fi/cumulative-impacts/ for more info.
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
-
Baltic International Trawl Survey (BITS) data (2011-2016) from ICES DATRAS database was used as a base to create a map of cod relative abundance (quarter 1 data, CPUE values per ICES subdivision). Cod = 30cm was included. For ICES rectangles surveyed by BITS, values shown are the mean CPUE per ICES subdivision based on BITS data, average for 2011-2016. For ICES rectangles not surveyed by BITS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = CPUE according to BITS in the ICES rectangle with highest landings. ICES rectangles outside the BITS survey area with no reported cod landings were given the value 0. Values were first log transformed and then normalized.
-
The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.
-
Input of hazardous substances pressure layer is interpolated from CHASE Assessment tool concentration component. The contamination ratio values were calculated with CHASE Assessment tool for hazardous substances monitored in water, sediment and biota. Classified mean contamination ratio was used in the interpolation. Classification is based on the http://stateofthebalticsea.helcom.fi/about-helcom-and-the-assessment/downloads-and-data/. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
This map shows the distribution and abundance of ringed seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).
-
Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.
-
Large shallow inlets bays (according to Habitats Directive Annex I) are large, shallow indentations of the coast, sheltered from wave action and where, in contrast to estuaries, the influence of freshwater is generally limited. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on GIS analysis and modelling, but also field inventories and ground-truthing has been carried out in some areas. Data coverage, accuracy and the methods in obtaining the data vary between countries.
-
The map of herring relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016 (ICES WGBIFS reports), reported as millions of herring / ICES rectangle. Also herring landings data were used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = millions of herring according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported herring landings were given the value 0. The relative abundance values in each ICES rectangle were divided by the area of the rectangle to obtain values per 1km2. If the values in small coastal ICES rectangles (outside BIAS area) became unrealistically large due to high herring landings, the value of the neighboring rectangle was given. The final layer was converted to 1 km x 1km grid cells. Values were first log transformed and normalized.
-
Introduction of radionuclides is based on HELCOM MORS Discharge data from 2011 to 2014. The isotopes taken into account were: Cesium-137, Strontium-90, and Cobalt-60. The decay-corrected annual average of the sum of the radionuclide discharges (in Bq) were calculated for the pressure. 10 km buffer with linear decreasing function was used to represent the impact distance from the nuclear power plant outlets.
HELCOM Metadata catalogue