From 1 - 10 / 161
  • Essential fish habitat (EFH) map on Potential spawning areas for cod was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ Cod (Gadus morhua) is represented by three stocks in the Baltic Sea; Eastern Baltic, Western Baltic and Kattegat cod, which is reflected in the map. “Potential spawning areas” were initially delimitated based on Hüssy (2011). In addition, the Gdansk deep as delineated by Bagge et al. (1994) was included as it sometimes contributes to reproduction of Eastern Baltic cod (Hinrichsen et al. 2016). The Gotland basin has ceased to contribute to the reproduction of cod (Hinrichsen et al. 2016). These definitions were applied in the HOLAS II project (HELCOM 2018a) based on approval by all HELCOM Contracting Parties in a review process (there referred to as ‘occasional successful spawning’ and ‘successful spawning’). Following HELCOM (2018b) additional potential spawning areas were identified by environmental thresholds for egg development and survival based on salinity and oxygen conditions (Hinrichsen et al. 2016) during 2011-2016. Separate thresholds were used for Eastern Baltic, Western Baltic and Kattegat cod. Areas denoted “high probability spawning areas” correspond to where the initial delineations (Hüssy 2011, Bagge et al. 1994) achieve the environmental threshold values. Stocks: Kattegat cod: ICES subdivision 21, Western Baltic cod: ICES subdivisions 22-24 Eastern Baltic cod: ICES subdivisions 24 + 25-32 EFH type: Potential spawning areas Approach: Literature review combined with identification of environmental window for spawning based on: salinity and oxygen for Eastern Baltic cod, and on: salinity and depth for Western Baltic Cod and Kattegat cod Variables and thresholds: Eastern Baltic cod: Salinity > 11, Oxygen > 1.5 ml/L (annual average) Western Baltic cod and Kattegat cod: Salinity > 18, Depth >20 m Quality: The Arkona deep is functional for spawning of both the Eastern and the Western Baltic cod and in effect, the definition of the Arcona Basin as a high probability areas in the Arkona basin reflect the result for Eastern Baltic cod. The effective distribution of cod spawning areas is highly dependent on the prevailing hydrological regime, and the presence of spawning also depends on seasonally variable hydrographical conditions, such as temperature, salinity and oxygen. Seasonal differences lead to a progressive spawning season towards the east, typically starting in Kattegat and the Sound in January/February and ending in July/August in the Bornholm area. Fluctuations in temperature can delay the spawning season up to two months. It is difficult to collect egg samples to verify cod spawning, as cod eggs may drift in deep areas, and instead the level of ichthyoplankton is a main source for estimation of good environmental conditions for cod spawning. Modelling based on ichthyoplankton should be validated by comparison with distribution of running adults, to resolve the potential influence of prevailing current speed. The proposed delineations are also influenced by research on the maturity of adults and histology of gonads. The adult and juvenile cod are distributed far outside of the spawning areas depicted in the map. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References - Bagge, O, F Thurow, E Steffensen, and J Bay (1994) The Baltic cod. Dana 10:1-28 - HELCOM (2018a) State of the Baltic Sea - Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155 - HELCOM (2018b) Outcome of the regional expert workshop on essential fish habitats, organized by Pan Baltic Scope project and HELCOM (HELCOM Pan Baltic Scope EFH WS 1-2018) - Hüssy, K (2011) Review of western Baltic cod (Gadus morhua) recruitment dynamics. ICES Journal of Marine Science 68:1459-1471 - Hüssy, K, HH Hinrichsen, and B Huwer (2012) Hydrographic influence on the spawning habitat suitability of western Baltic cod (Gadus morhua). ICES Journal of Marine Science, doi:10.1093/icesjms/fss136 - Hinrichsen, HH, A Lehmann, C Petereit, A Nissling, D Ustups, U Bergström, and K. Hüssy (2016) Spawning areas of eastern Baltic cod revisited. Using hydrodynamic modelling to reveal spawning habitat suitability, egg survival probability, and connectivity patterns. Progress in Oceanography 143:13-25 SwAM (2019). Swedish Agency for Marine and Water Management. Symphony Metadata March 2019.whttps://www.havochvatten.se/download/18.67e0eb431695d86393371d86/1552566811384/bilaga-1-symphony-metadata.zip

  • This dataset represents the underlying data on core indicator Abundance of salmon spawners and smolt. The indicator evaluates the status of the abundance of salmon spawners and smolt in the Baltic Sea based on salmon smolt production in rivers flowing into the sea, also making use of additional supporting data on numbers of adult spawners. Determination of whether the threshold value that determines good status is achieved is based on a comparison of estimated smolt production with an estimated potential smolt production capacity. River-specific information provided by ICES WGBAST has been joined with river geometry by HELCOM Secretariat. Attribute information: "River_name" = Name of the river "A_unit" = HELCOM scale 2 Assessment unit "ICES_A_uni" = ICES assessment unit number "Assessment" = HELCOM scale 2 Assessment unit "ICES_Asses" = Number of ICES assessment unit "Estimates_" = Estimates of wild smolt production (*1000) median value "F90_proba" = 90% probability interval "Method_of_" = Method of estimation (1. Bayesian linear regression model, i.e. river model, 2. Sampling of smolts and estimate of total smot run size, 3. Estimate of smolt run from parr production by relation developed in the sae iver, 4. Estimate of smolt run from parr production by relation developed in another river, 5. Inference of smolt production from data derived from similar rivers in the region, 6. Count of spawners, 7. Estimate inferred from stocking of reared fish in the river, 8. Salmon catch in river, exploitation and survival estimate) "Data_sourc" = Data source "Data_origi" = Data originator (natonal instiute) "National_m" = National monitoing (YES/NO) "Use_restri" = Use restrictions (YES/NO)

  • This dataset represents the underlying data on core indicator Population trends and abundance of seals 2018. This dataset contains reported observations for harbour seals. The core indicator evaluates seal distribution to determine whether it reflects good status. Quantitative thresholds are used to evaluate if core indicators status is Good, Not good or Not assessed. Attribute information: "Species" = Species (HS = Harbour seal) "Country" = Country (2 digit acronym) "Site" = Name of site "Area" = Area "HELCOM_SUB" = Name of HELCOM Level 2 assessment unit "Latitude" = Latitude (WGS84 decimal degrees) of site "Longitude" = Longitude (WGS84 decimal degrees) of site "N2000_ID" = Natura2000 ID, if the site is located within Natura 2000 site (if available) "Year" = Year of observation "Month" = Month of observation "Day" = Day of observation (if available) "Count" = Number of individuals observed on site "Count_type" = County type "Age" = Age of individuals (if available) "No_surveys" = Number of surveys "Method" = Method of survey "CV_Estimate" "Estimate_T" = Estimate type: Modelled / minimum (observed) "Source" = Data source

  • This dataset represents the underlying data on core indicator Seasonal succession of dominating phytoplankton groups 2018. The core indicator evaluates phytoplankton community structure to determine whether it reflects good environmental status. Quantitative thresholds are used to evaluate if core indicators status is Good, Not good or Not assessed. Attribute information: "Code"= ID of HELCOM level 2 assessment unit "Assessment" = Name of HELCOM level 2 assessment unit "Station" = Name of station "Lat" = Latitude of station in WGS 84 decimal degrees "Lon" = Longitude of station in WGS 84 decimal degrees "Data_avail" = Data availability period (years) "Reference" = Reference period (years) "Data_provi" = Data provider organisation "Country" = Data provider country "Station_na" = Station name "Date" = Sampling date and time "Year" = Year of sampling "Month" = Month of sampling "Cyano" = Cyanobacteria "Dino" = Dinoflagellates "Diatoms" = Diatoms "Meso_rub" = Mesodinium rubrum "CyanoIn" = "DinoIn" = "DiatomsIn" = "MesoRubIn" =

  • This dataset represents the underlying data on core indicator Abundance of coastal fish key functional groups. The core indicator evaluates the abundance of selected functional groups of coastal fish in the Baltic Sea. Quantitative thresholds are used to evaluate if core indicators status is Good, Not good or Not assessed. As a rule, good status is achieved when the abundance of piscivores (i.e. fish that feed on other fish) is above a site-specific threshold value, and the abundance of cyprinids or mesopredators (i.e. mid trophic-level fish) is within an acceptable range for the specific site. The status of functional groups of coastal fish in the Baltic Sea has been evaluated by assessing the status of piscivores and cyprinids/mesopredators during the period 2011-2016. This dataset displays the result of the indicator in HELCOM Assessment Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "COUNTRYID" = Country code "ORGANIZATI" = Data provider "AREANAME" = ICES area name "ASSESSMENT" = Name of scale 3 HELCOM assessment unit "IndicatorI" = Indicator name (abbreviation) "Functional" = Functional group "IndicatorV" = Result value for the indicator "MethodId" = Catch method "GearType_N" = Gear type of catch "Season_NAM" = Season

  • This dataset represents the underlying data on core indicator Abundance of coastal fish key functional groups. The core indicator evaluates the abundance of selected functional groups of coastal fish in the Baltic Sea. Quantitative thresholds are used to evaluate if core indicators status is Good, Not good or Not assessed. As a rule, good status is achieved when the abundance of piscivores (i.e. fish that feed on other fish) is above a site-specific threshold value, and the abundance of cyprinids or mesopredators (i.e. mid trophic-level fish) is within an acceptable range for the specific site. The status of functional groups of coastal fish in the Baltic Sea has been evaluated by assessing the status of piscivores and cyprinids/mesopredators during the period 2011-2016. This dataset displays the result of the indicator in HELCOM Assessment Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "COUNTRY" = Country code "DATAPROVID" = Data provider "AREANAME" = ICES area "ASSESSMENT" = Name of scale 3 HELCOM assessment unit "FUNC_GROUP" = Functional group "IND_VALUE" = Result value for the indicator "METHOD" = Catch method "GEARTYPE" = Gear type of catch "SEASONID" = Season

  • This dataset contains data used for the HELCOM Core indicator State of the soft-bottom macrofauna community 2018. Attribute information: "SampleID" = Sample ID "Station" = Station name "Year" = Year of sampling event "Latitude" = Latitude coordinate (WGS84 decimal degrees) "Longitude" = Longitude coordinate (WGS84 decimal degrees) "Depth" = Depth of station (m) "Sentivit" = Sensitivity subset "Sampling_a" = Sampling area (cm2) "Sieve_mesh" = Sive mesh size (microm) "BQI" = Benthic quality index value "Data sourc" = Source of data (national monitoring / other) "Data_origi" = Data providing organization "Country" = Data providing country "Assessment" = HELCOM Level 2 assessment unit where the station resides

  • This dataset represents the underlying data on core indicator in Abundance of key coastal fish species 2018. The core indicator evaluates the abundance of typical species of fish, such as perch and flounder, in the coastal areas of the Baltic Sea, to assess environmental status. Quantitative thresholds are used to evaluate if core indicators status is Good, Not good or Not assessed. As a rule, good status is achieved when the abundance is above a set site and species-specific threshold value. This dataset displays the result of the indicator in HELCOM Assessment Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "COUNTRYID" = Country code "ORGANIZATI" = Data provider "AREANAME" = ICES area "Assessment" = Name of scale 3 HELCOM assessment unit "IndicatorI" = Name of the indicator (abbreviation) "SpeciesId" = Species "IndicatorV" = Result value for the indicator "MethodId" = Catch method "GearType_N" = Gear type of catch "Season_NAM" = Season

  • The indicator evaluates the coincidence of seasonal succession of dominating phytoplankton groups over an assessment period (commonly 5-6 years) using regionally established reference seasonal growth curves and wet weight biomass data. The indicator result value is based on the number of data points falling within the acceptable deviation range set for each monthly point of the reference growth curve and expressed as the percentage to the total number of data points. This result value is then compared to regionally relevant threshold values established to represent acceptable levels of variation. Strong deviations from the reference growth curves will result in failure to meet the thresholds set for acceptable variation, indicating impairment of the environmental status and a failure to meet good status. Seasonal succession of dominating phytoplankton groups displays the result of the indicator in HELCOM Assessment Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "HELCOM_ID" = HELCOM ID of the HELCOM scale 3 assessment unit "country" = Country "level_2" = Name of HELCOM scale 2 assessment unit "level_3" = Name of HELCOM scale 3 assessment unit "Area (km2)" = Area of HELCOM assessment unit "Overall Score" = Indicator value or result "Info" = additional info "AULEVEL" = Assessment unit level used for the indicator "Status" = Status of the indicator (“Achieve”, “Fail” or “Not assessed”) "Assessment" = Assessment unit name "Reference period" = Reference period(s) "Threshold value" = Threshold value (overall) "Indicator cyanobacteria" = Indicator value for cyanobacteria "Indicator dinoflagellates" = Indicator value for dinoflagellates "Indicator diatoms" = Indicator value for diatoms "Indicator Mesodinium rubrum" = Indicator value for Mesodinium rubrum "Indicator green algae" = Indicator value for green algae

  • This dataset represents the underlying data on core indicator in Abundance of key coastal fish species. The core indicator evaluates the abundance of typical species of fish, such as perch and flounder, in the coastal areas of the Baltic Sea, to assess environmental status. Quantitative thresholds are used to evaluate if core indicators status is Good, Not good or Not assessed. As a rule, good status is achieved when the abundance is above a set site and species-specific threshold value. This dataset displays the result of the indicator in HELCOM Assessment Scale 3 (Division of the Baltic Sea into 17 sub-basins and further division into coastal and offshore areas). Attribute information: "COUNTRY" = Country code "DATAPROVID" = Data provider "AREANAME" = ICES area "A_unit" = Name of scale 3 HELCOM assessment unit "IND_VALUE" = Result value for the indicator "METHOD" = Catch method "GEARTYPE" = Gear type of catch "SEASONID" = Season