environmental impact
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Resolution
-
This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
-
Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: Land claim - Area of polygon or 50 m buffer for points, 30m buffer for lines. Area of polygon - buffered line or point data, equals lost area. Watercourse modification - 50 m buffer. Area of polygon, buffered line or point data, equals lost area. Coastal defence and flood protection - 50 m buffer for lines, area of polygon. Area of polygon, buffered line or point data, equals lost area. Extraction of sand and gravel - Area of polygon. Area of polygon equals lost area. Dredging (capital) - Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 sites. Area of polygon, buffered line or point data, equals lost area. Oil platforms - 25 m buffer. Buffered point data, equals lost area. Pipelines - 15 m buffer around cables with operational status. Area of polygon, buffered line or point data, equals lost area. Wind farms - 30 m buffer around each turbine with operational status. Buffered point data, equals lost area. Cables - 1.5 m buffer around cables with operational status. Buffered line data, equals lost area. Harbours - Polygon with 200 m buffer. Area of polygon, buffered line or point data, equals lost area. Marinas and leisure harbour - Point with 200 m buffer. Buffered point data, equals lost area. Bridges - 2 m buffer. Buffered line data, equals lost area. Finfish mariculture - 150 m buffer. Buffered point data, equals lost area. Shellfish mariculture - Area of polygon, 150 m buffer for points. Buffered point data, equals lost area. Activities are combined and potentially overlapping areas are removed. Dataset is clipped with coastline. Combined layer is intersected with 1 km grid to calculate % of area lost within a cell.
-
Introduction of radionuclides is based on HELCOM MORS discharge data (2016-2020) . Annual averages of CO60, CS137 and SR90 from the period 2016-2020 per nuclear power plant. Gradual buffer around outlet to 10km distance (Type B decline). 10 km buffer with linear decline composed of 5 rings from discharges of radioactive substances (Type B decline)12.
-
Introduction of radionuclides is based on HELCOM MORS Discharge data from 2011 to 2014. The isotopes taken into account were: Cesium-137, Strontium-90, and Cobalt-60. The decay-corrected annual average of the sum of the radionuclide discharges (in Bq) were calculated for the pressure. 10 km buffer with linear decreasing function was used to represent the impact distance from the nuclear power plant outlets.
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. Water course modification: 1 km buffer[10]. Location of water course modifications used for buffer. Overlaps removed and areas of buffer calculated per each grid cell. The final value was the area of the buffer in each individual cell. Wind farms: 300 m buffer around each turbine classified as operational, with linear decline (Type B decline), composed of 3 rings. Location of operational turbines as points were buffered and values given over linear decline. Oil platforms: 500 m buffer around each turbine with linear decline (Type B decline) composed of 5 rings. Location of oil platforms as points were buffered and values given over linear decline. Hydropower dams: A grid cell in the estuary. Locations of hydropower dams were crossed with rivers and the grid cell located in the end of the river was selected as presence (1) – those that are operational and produces energy. Other values in the grid were considered absence. [10] Extent based on wind farms and cables but expanded to 1 km because hydrological parameters are widely spreading. The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
-
Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets. Detailed information about this pressure layer can be found in the indicator report.
-
The layer depicts the pressure of hazardous substances in the Baltic Sea, based on the data from the HOLAS 3 integrated hazardous substances assessment. The methodology utilizes the integrated status values available for each HELCOM assessment unit on level 3. The results are based on multiple hazardous substances groups integration, done through the CHASE tool. The integrated assessment assess the hazardous substances status in biota, water and sediment, and final result in based on the worst status. As the SPIA is carried out using a 1x1km grid and the Integrated hazardous substances is assessed on vector-based HELCOM assessment units, the vector data is rasterized. First, the vector data is rasterized to 100x100m resolution, and thereafter it is aggregated to 10x10km grid using a mean value. A 10 km grid is used in order to make the gradients between assessment units slightly smoother and finally values are converted to 1x1 km resolution. Please see "lineage" section below for further details.
-
The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.
-
Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets.
HELCOM Metadata catalogue