nuclear power plant
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
Input of heat pressure dataset contains delta heat values from warm water discharge of - Discharge of warm water from nuclear power plants - Fossil fuel energy production. The Discharge of warm water from nuclear power plants was requested from HELCOM Contracting Parties. Average temperature change of the cooling water (°C) and amount of cooling water (m3) was used to calculate the heat load in TWh. No data on heat load was available for the Leningrad nuclear power plant; therefore the average heat load (TWh) of discharge of warm water from nuclear power plants was given. No heat load information was available for fossil fuel energy production sites. Heat load of 1 (TWh) was given to all production sites, based on average heat load of individual production site in Helsinki from recent years. 1 km buffer was used for both datasets with steep decline around the outlet. Overlapping areas were summed. Heat load from both layers were summed and the layer was normalized.
-
Introduction of radionuclides is based on HELCOM MORS Discharge data from 2011 to 2014. The isotopes taken into account were: Cesium-137, Strontium-90, and Cobalt-60. The decay-corrected annual average of the sum of the radionuclide discharges (in Bq) were calculated for the pressure. 10 km buffer with linear decreasing function was used to represent the impact distance from the nuclear power plant outlets.
-
Introduction of radionuclides is based on HELCOM MORS discharge data (2016-2020) . Annual averages of CO60, CS137 and SR90 from the period 2016-2020 per nuclear power plant. Gradual buffer around outlet to 10km distance (Type B decline). 10 km buffer with linear decline composed of 5 rings from discharges of radioactive substances (Type B decline)12.
-
Input of heat pressure dataset contains delta heat values from warm water discharge of - Discharge of warm water from nuclear power plants - Fossil fuel energy production. Discharge of warm water from nuclear power plants (2016-2021): 1 km buffer with steep decrease around outlet (Type D decline), composed of 4 rings [1]. Average input of heat load (Twh) of discharge of warm water from the nuclear power plant outlets. No data on heat load was available for the Leningrad nuclear power plant; therefore, the average heat load of discharge of warm water from nuclear power plants was given. Fossil fuel energy production (only location available): 1 km buffer with steep decrease around outlet (Type D decline), composed of 6 rings[12]. Heat load 1 (TWh) was given to all production sites, based on the average heat load of an individual production site in Helsinki. Heat load from both layers were summed and the layer was normalized. [1] Extent based on Ilus et al. 1986.