From 1 - 10 / 78
  • Distribution of Fucus sp. based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Fucus were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (Fucus points and the raster presenting predicted presence of Fucus) were generalized to 5km x 5km grid cells.

  • This dataset is built from the following Human activities dataset: • Hunting of seals The number of hunted seals (see separate metadata on hunting of seals) were averaged over 2011-2014 separately for grey seals, ringed seals and harbour seals (e.g. number of hunted grey seals / year). In Sweden the numbers of hunted grey seals in 2011 (74) were reported for the whole Swedish territorial waters), but here the numbers were set only to Swedish Gulf of Bothnia, as corresponding numbers were reported there in 2013 (75) and 2014 (65). The area of the reporting unit was used to calculate the number of hunted seals / km2 and the data was converted to 1km x 1km grid. For the Baltic Sea Impact Index, the values were normalized. Normalized value 0.5 was set to the level of quota for hunting of seal species in the Baltic Sea. The following quotas for hunting were used: Grey seal: 2000, Ringed seal: 350, Harbour seal 230.

  • Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).

  • Distribution of Charophytes (Chara spp., Nitella spp., Nitellopsis spp., Tolypella spp.) mainly based on data submission by HELCOM contracting parties. Submitted point data was originally gathered in national mapping and monitoring campaigns, or for scientific research. Also scientific publications were used to complement the data (in Curonian, Vistula and Szczechin lagoons, see reference list). Polygon data from Poland was digitized based on Polish Marine Atlas. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Charophytes) were generalized to 5km x 5km grid cells.

  • Potential cumulative impacts of eutrophication and hazardous substances assesses the cumulative potential effect of eutrophication and hazardous substances over all ecosystem components. The evaluation is based on the pressure layer on eutrophication and hazardous substances, combined with information on all ecosystem components (57 layers) included in SPIA for HOLAS 3. The thematic analyses is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.

  • The extraction of herring data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/a3b67a55-7c1e-469e-b692-58c4e7b79279 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of herring. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.

  • This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The abundance of harbour porpoise is presented using 4 abundance classes. The classification is based on expert consultation and information from scientific literature (e.g. Sveegaard et al. 2011, Viquerat et al. 2014). The class borders are defined by expert opinion and generalizing the data gathered and modelled in SAMBAH project. For the Baltic Proper the SAMBAH results have been used to delineate the class borders: 20% probability of detection during May-October has been used to define the area of “common occurrence and reproduction”, and the 20% probability of detection during November-April has been used to define the “regular occurrence, no regular reproduction” area. Please note: The applied spatial scale includes lagoons and estuaries of the inner coastal waters (e.g. Szczecin Lagoon, Jasmund lagoon) where harbour porpoises do not or only exceptionally occur unlike the map suggests.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral hard substrate” includes classes “Rock and other hard substrate” and “Coarse substrate” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.