2016
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). For perch, species distribution modelling studies (Snickars et al. 2010, Bergström et al. 2013, Sundblad et al. 2013) have shown the importance of suitable environmental conditions for reproduction. Due to lack of coherent data on perch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for perch. The distribution area or perch recruitment is delineated by selecting areas where depth < 4 m (For Danish waters < 3 m), logged exposure < 5 (exposure model described in Isæus 2004), and salinity < 10 PSU. The threshold values have been obtained from literature (Snickars et al. 2010, Bergström et al. 2013, Skovrind et al. 2013, Sundblad et al. 2013). Relatively “loose” thresholds have been used, to rather overestimate than underestimate the recruitment area (precautionary approach). Along the Finnish coastline a national model has been used (Kallasvuo et al. 2016), with suitable environments for perch recruitment generalized to 1 km x 1 km grid.
-
Spawning area of cod in the Baltic Sea. The delineation of the spawning area is mainly based on Hüssy 2011. In addition, Gdansk deep (delineation based on Bagge et al. 1994) is included in the map, as it still sometimes contributes to reproduction of eastern Baltic cod stock ((Hinrichsen et al. 2016). Gotland basin has ceased to contribute to the reproduction of the Eastern Baltic cod due to oxygen deficiency and sedimentation related mortality (Hinrichsen et al. 2016).
-
The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mud” includes classes “Fine mud”, “Sandy mud” and “Mud to sandy mud” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral hard substrate” includes classes “Rock and other hard substrate” and “Coarse substrate” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mixed substrate” includes classes “mixed sediment” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
Mudflats and sandflats not covered by seawater at low tide (according to Habitats Directive Annex I) are often devoid of vascular plants, usually coated by blue algae and diatoms. They are of particular importance as feeding grounds for wildfowl and waders. The distribution map is based on data submission by HELCOM contracting parties. Only Denmark, Germany and Estonia reported occurrences of mudflats and sandflats. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.
-
This map presents the Special Protection Areas (SPAs) with reported wintering areas for birds. The spatial data on SPAs were gathered from the HELCOM contracting parties by Lund University, Sweden. In the data, the countries also indicated whether the sites were designated mainly due to wintering or breeding birds in the area. For Denmark, the information was obtained from standard forms for Natura 2000 sites. For Denmark, the data was updated after review process 20 February 2017. For Germany, the areas that were reported as “NA”(=information not available) were included in both breeding and wintering area maps. Many of the SPAs are both wintering and breeding areas. For the Baltic Sea Impact Index, the data was converted to 1 km x 1km grid cells.
-
Summary Under the Convention on Wetlands (Ramsar, 1971), each Contracting Party undertakes to designate at least one wetland site for inclusion in the List of Wetlands of International Importance (the “Ramsar List”). There are over 2,000 “Ramsar Sites” on the territories of over 160 Ramsar Contracting Parties across the world. For more information on the Convention, please visit the Ramsar website http://www.ramsar.org. The Ramsar Sites Information Service (RSIS) provides online information on wetlands that have been designated as internationally important. All Site information is provided by the Contracting Parties to the Convention and is managed by the Ramsar Secretariat. Responsibility for the accuracy of the data lies with the Administrative Authority of the Party in which the Ramsar Site is located. The Ramsar Secretariat provides open access to the RSIS and its data, to promote the conservation and wise use of wetlands. If you are interested in an overview of the Ramsar Sites network, or are looking for information on a specific Site, please visit the Explore Sites page. You will find: a searchable database of Ramsar Sites, which holds information on the wetland types, ecology, land uses, threats, hydrological values of each Site as well as spatial information downloadable copies of Ramsar Information Sheets (RISs) for each site which have been provided by the Contracting Parties , including maps and supplementary information, Site summaries, and exportable data sets; and digital (GIS) boundaries of Sites, where available. For any further questions, comments or other inquiries about the RSIS, please contact the Ramsar Secretariat at ramsar@ramsar.org. Description This dataset displays Ramsar site polygon areas downloaded from https://rsis.ramsar.org/ in 17.2.2016. The dataset was subsetted by selecting only the sites that are withing Baltic Sea drainage area and projected to ETRS89LAEA by the HELCOM Secretariat.
-
Estuaries (according to Habitats Directive Annex I) are coastal inlets that are strongly influenced by freshwater. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and/or aerial photos. Data coverage, accuracy and the methods in obtaining the data vary between countries.