From 1 - 10 / 72
  • Locations of the coastal protection structures. The dataset contains information about the coastal defence structure type and for some the structure length (m) and the year of construction. The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Estonia, Germany, Finland, Poland and Sweden. The activity was declared as not relevant in Lithuanian area. From Latvia and Russia no data was reported. Attribute specification and units Country: Country Type: Modification structure type Const_year: Year of construction Estimated: Estimated date of completion if under construction (Estonia) or the year of environmental permit if year of construction is lacking (Finland) Out_of_use: Year when costal defence structure has been taken out of use Measure: Additional information about the modification structure Length: Length of the modified coastline (m) width: Width of the modification structure (m) Area: Area of the modification structure (km2) X_Lon: Original X (Longitude) coordinate point (Finland)

  • Submarine structures made by leaking gases (according to Habitats Directive Annex I) are also known as “bubbling reefs”. These formations support a zonation of diverse benthic communities consisting of algae and/or invertebrate specialists of hard marine substrates different to that of the surrounding habitat. The distribution map is based on data submission by HELCOM contracting parties. Only Sweden and Denmark reported occurrences of submarine structures made by leaking gases.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mixed substrate” includes classes “mixed sediment” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • This dataset contains all PAH in biota monitoring station locations, observed matrix, biota matrix and monitored species as reported to HELCOM secretariat by HELCOM Contracting Parties by 2016.

  • This dataset contains all HBCD in biota monitoring station locations, observed matrix, biota matrix and monitored species as reported to HELCOM secretariat by HELCOM Contracting Parties by 2016.

  • This dataset contains all PCB in seawater monitoring station locationsas reported to HELCOM secretariat by HELCOM Contracting Parties by 2016.

  • Springtime Chl-a concentration is here used as a proxy for productive surface waters. In the Baltic Sea Impact Index (BSII), areas with high springtime phytoplankton production will be given higher importance, as they are considered important areas for the Baltic Sea food web. In the current map, mean of springtime maximum weekly values (weeks 12-22, years 2003-2011) Chl-a concentration of the surface waters has been used, derived from satellite data (MERIS). Years 2003-2011 have been used, as there is no MERIS data available for years 2012-2016. The data for eastern Baltic Sea is provided by the Finnish Environment Institute (~300m resolution). Outside this high resolution data, MERIS-data downloaded from JRC-database has been used (~4 km resolution, to calculate average of maximum monthly values for April or May for 2003-2011). Both datasets were converted to 1 km x 1 km grid cells.

  • Location of water course modifications (trenching, culverting, canalisation). The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Estonia, Finland and Poland. Data reported by Finland and Poland as water course modification were interpreted as pipelines and were included in HELCOM HOLAS 2 Pipelines dataset. The activity was declared as not relevant in Germany and Lithuania. From Latvia, Russia and Sweden no data was reported.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral sand” includes classes “Sand” and “Muddy sand” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Boreal Baltic islets and small islands (according to Habitats Directive Annex I) are groups of skerries, islets or single small islands, mainly in the outer archipelago or offshore areas. They are important nesting sites for birds and resting sites for seals. The surrounding sublittoral vegetation is also included. The distribution map is based on data submission by HELCOM contracting parties. Only Sweden and Finland reported occurrences of boreal Baltic islets and small islands.