2016
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
-
The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). For perch, species distribution modelling studies (Snickars et al. 2010, Bergström et al. 2013, Sundblad et al. 2013) have shown the importance of suitable environmental conditions for reproduction. Due to lack of coherent data on perch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for perch. The distribution area or perch recruitment is delineated by selecting areas where depth < 4 m (For Danish waters < 3 m), logged exposure < 5 (exposure model described in Isæus 2004), and salinity < 10 PSU. The threshold values have been obtained from literature (Snickars et al. 2010, Bergström et al. 2013, Skovrind et al. 2013, Sundblad et al. 2013). Relatively “loose” thresholds have been used, to rather overestimate than underestimate the recruitment area (precautionary approach). Along the Finnish coastline a national model has been used (Kallasvuo et al. 2016), with suitable environments for perch recruitment generalized to 1 km x 1 km grid.
-
This dataset contains all dioxins in sediments monitoring station locations as reported to HELCOM secretariat by HELCOM Contracting Parties by 2016.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral hard substrate” includes classes “Rock and other hard substrate” and “Coarse substrate” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
This dataset contains all PAH in biota monitoring station locations, observed matrix, biota matrix and monitored species as reported to HELCOM secretariat by HELCOM Contracting Parties by 2016.
-
Springtime Chl-a concentration is here used as a proxy for productive surface waters. In the Baltic Sea Impact Index (BSII), areas with high springtime phytoplankton production will be given higher importance, as they are considered important areas for the Baltic Sea food web. In the current map, mean of springtime maximum weekly values (weeks 12-22, years 2003-2011) Chl-a concentration of the surface waters has been used, derived from satellite data (MERIS). Years 2003-2011 have been used, as there is no MERIS data available for years 2012-2016. The data for eastern Baltic Sea is provided by the Finnish Environment Institute (~300m resolution). Outside this high resolution data, MERIS-data downloaded from JRC-database has been used (~4 km resolution, to calculate average of maximum monthly values for April or May for 2003-2011). Both datasets were converted to 1 km x 1 km grid cells.
-
Introduction of radionuclides is based on HELCOM MORS Discharge data from 2011 to 2014. The isotopes taken into account were: Cesium-137, Strontium-90, and Cobalt-60. The decay-corrected annual average of the sum of the radionuclide discharges (in Bq) were calculated for the pressure. 10 km buffer with linear decreasing function was used to represent the impact distance from the nuclear power plant outlets.
-
This dataset contains all PAH in seawater station locationsas reported to HELCOM secretariat by HELCOM Contracting Parties by 2016.
-
Regional hunting numbers for Harbour seals 2011-2014.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mixed substrate” includes classes “mixed sediment” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
Number of hunted cormorants (Phalacrocorax carbo) per year per county. A total sum and a calculated average (hunted individuals / year) is given for the time period 2011-2015. The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Estonia, Finland and Sweden. The activity was declared as not relevant in Germany, Lithuania and Poland. From Latvia and Russia no data was reported. Attribute specification and units: Country: Country County: County SUM: Total number of hunted individuals during 2011 – 2015 AVERAGE: A calculated five (or four) year average of hunted cormorants per year (hunted individuals/year) 2011 – 2015: Number of hunted cormorants in the year in question
HELCOM Metadata catalogue