From 1 - 10 / 40
  • This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The abundance of harbour porpoise is presented using 4 abundance classes. The classification is based on expert consultation and information from scientific literature (e.g. Sveegaard et al. 2011, Viquerat et al. 2014). The class borders are defined by expert opinion and generalizing the data gathered and modelled in SAMBAH project. For the Baltic Proper the SAMBAH results have been used to delineate the class borders: 20% probability of detection during May-October has been used to define the area of “common occurrence and reproduction”, and the 20% probability of detection during November-April has been used to define the “regular occurrence, no regular reproduction” area. Please note: The applied spatial scale includes lagoons and estuaries of the inner coastal waters (e.g. Szczecin Lagoon, Jasmund lagoon) where harbour porpoises do not or only exceptionally occur unlike the map suggests.

  • Distribution of eelgrass based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of eelgrass were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Polygon data from Puck Bay (Poland) was digitized based on Polish Marine Atlas and Orlowo cliff area was added based on expert knowledge. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of eelgrass in the Estonian waters) were generalized to 5km x 5km grid cells.

  • The map of herring relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016 (ICES WGBIFS reports), reported as millions of herring / ICES rectangle. Also herring landings data were used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = millions of herring according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported herring landings were given the value 0. The relative abundance values in each ICES rectangle were divided by the area of the rectangle to obtain values per 1km2. If the values in small coastal ICES rectangles (outside BIAS area) became unrealistically large due to high herring landings, the value of the neighboring rectangle was given. The final layer was converted to 1 km x 1km grid cells. Values were first log transformed and normalized.

  • Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.

  • This map shows the distribution and abundance of grey seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.

  • Baltic Sea coastline. The source is OpenStreetMap data downloaded from http://openstreetmapdata.com/data/coastlines and processed at HELCOM. This data contains all the detail available in OSM by 31 Jan 2018.

  • Baltic International Trawl Survey (BITS) data (2011-2016) from ICES DATRAS database was used as a base to create a map of cod relative abundance (quarter 1 data, CPUE values per ICES subdivision). Cod = 30cm was included. For ICES rectangles surveyed by BITS, values shown are the mean CPUE per ICES subdivision based on BITS data, average for 2011-2016. For ICES rectangles not surveyed by BITS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = CPUE according to BITS in the ICES rectangle with highest landings. ICES rectangles outside the BITS survey area with no reported cod landings were given the value 0. Values were first log transformed and then normalized.

  • This dataset shows the sub-basins of the Baltic Sea which are used for Baltic Sea Pollution Load Compilation 6.

  • The extraction of cod pressure layer is based on two datasets: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/7a1389b3-382a-487f-8888-ac45c94c5a97 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). 2. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/debeafcd-948b-4455-88ae-7a3d1618f5a8 from ICES recreational fisheries reports for 2011-2016, reported per country (only coastal areas included). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² were calculated for both data sets and the results were converted to 1 km x 1 km grid cells. The layers were summed together, log-transformed and normalised to produce the final pressure layer on extraction of cod. Please see "lineage" section below for further details on attributes, data source, data processing, etc.