From 1 - 10 / 39
  • Eutrophication, caused by excess input of nutrients, is one of the main threats affecting the Baltic Sea marine environment. Nutrients enter the Baltic Sea as waterborne (riverine inputs from the catchment area and direct discharges from point and diffuse sources in coastal areas) and airborne (atmospheric deposition) inputs. In 2007 HELCOM adopted a nutrient reduction scheme which is based on maximum allowable nutrient inputs (MAI) to reach "good environmental status" and country-wise nutrient reduction targets (CART) to share the burden of reducing nutrient pollution to the sea (HELCOM Baltic Sea Action Plan). Monitoring of nutrient inputs to the sea is important for assessing progress of countries towards their CART and to evaluate the effectiveness of measures to reduce pollution. This dataset displays nutrient loading as produced for http://www.helcom.fi/baltic-sea-trends/indicators/inputs-of-nutrients-to-the-subbasins HELCOM Core indicator: Inputs of nutrients to the subbasins based on HELCOM PLC data. Green colour of PLC subbasin indicates that inputs during 2016 were lower than MAI, red colour when they were higher, while yellow indicates that when taking into account the statistical uncertainty of input data it is not possible to determine whether MAI was fulfilled. The dataset contains following attributes: Basin: Name of PLC Subbasin Maximum allowable nutrient input: Maximum allowable nitrogen input for the subbasin (tons/year) N input including statistical uncertainty 2016: the average nitrogen input during 2016 including statistical uncertainty (tons/year) N input 2016 including statistical uncertainty in % of MAI: proportion of normalized nitrogen input during 2016 compared to MAI (%) Classification of achieving MAI: Classification of achieving MAI is given in colours: green=MAI fulfilled, yellow= fulfilment is not determined due to statistical uncertainty, and red=MAI not fulfilled.

  • The dataset contains total landings of cod for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle) under EU Joint Research Centre’s data collection framework for fisheries data. Russian data extracted from ICES annual reports.

  • The dataset contains total landings of sprat for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle) under EU Joint Research Centre’s data collection framework for fisheries data. Russian data extracted from ICES annual reports.

  • Data set represents dredging activities around the Baltic Sea. The data set contains information about the dredging activity and for some the type (capital, maintenance) and the year of activity as reported by HELCOM Contracting Parties in response to data request. The dredging data is missing from Denmark.

  • Data set represents dredging activities around the Baltic Sea. The dataset contains information about the dredging activity and for some the type (capital, maintenance) and the year of activity as reported by HELCOM Contracting Parties in response to data request. The dredging data is missing from Denmark.

  • This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.

  • This data set on deposition sites of dredged material (areas) reported by HELCOM Contracting parties according to http://www.helcom.fi/Recommendations/Rec%2036-2.pdf for the reporting period 2011-2016. The dataset contains data reported by nationally by nominated experts by HELCOM PRESSURE group for Denmark, Germany, Estonia, Finland, Latvia, Lithuania, Poland, Russia and Sweden.

  • The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.

  • Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: - Bridges (2 m) - Cables (operational; 1,5 m) - Coastal defence and flood protection (area of polygon, 50 m for lines) - Dredging (capital dredging, Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 points) - Extraction of sand and gravel - Finfish mariculture (150 m) - Harbours (polygon with 200 m buffer) - Land claim (area of polygon, 30m buffer for lines) - Marinas and leisure harbours (200 m) - Oil platforms (25 m) - Oil terminals and refineries (200 m) - Pipelines (operational; 15 m) - Shellfish mariculture (area of polygon, 150 m points) - Watercourse modification (50 m) - Wind turbines (operational; 30m point location of turbine) The datasets were first processed separately covering the whole Baltic Sea and then merged into one uniform data layer and minimizing the effect of overlapping areas. Polygon areas were clipped with coastline to remove buffered areas that reached to land.

  • This data set on deposition sites of dredged material (points) reported by HELCOM Contracting parties according to http://www.helcom.fi/Recommendations/Rec%2036-2.pdf for the reporting period 2011-2016. The dataset contains data reported by nationally by nominated experts by HELCOM PRESSURE group for Denmark, Germany, Estonia, Finland, Latvia, Lithuania, Poland, Russia and Sweden.