From 1 - 10 / 40
  • Amount of hunted birds (number of birds/area) per year per area (county) is given separately for each target species: common scooter (Melanitta nigra), velvet scoter (Melanitta fusca), eider (Somateri molissima) and long tailed duck (Clangula hymalis). The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Estonia, Finland and Sweden. The activity was declared as not relevant in Germany, Latvia, Lithuania and Poland. For each species, a total number of hunted birds during the time period and a calculated average (hunted birds/year), is given. Data includes a total number (sum) of all hunted birds during the time period per county (total number of hunted birds/ county) and an average for hunted birds annually (hunted individuals/year). Velvet scoter is protected species in Sweden and Finland, and not listed as a game in Estonia. Common scoter is also protected species in Finland, thus hunting data is not available. Attribute specification and units: Country: Country AreaCode: County’s national code Area: County, unit area TOTAL: Total number of hunted birds in 2011-2015 Average: An average of hunted birds in a year (hunted birds/year) 2011_Sco – 2015_Sco: Number of hunted common scoters in 2011-2015 SUM_Sco: Total number of hunted common scoters in 2011-2015 Mean_Sco: An average number of hunted common scoters in a year (hunted individuals/year) 2011_VSco – 2015_VSco: Number of hunted velvet scoters in 2011 - 2015 SUM_Vsco: Total number of hunted velvet scoters in 2011-2015 Mean_Vsco: An average number of hunted velvet scoters in a year (hunted individuals/year) 2011_Eider – 2015_Eider: Number of hunted eiders in 2011 - 2015 SUM_Eider: Total number of hunted eiders in 2011-2015 Mean_Eider: An average number of hunted eiders in a year (hunted individuals/year) 2011_LTDuc – 2015_LTDuc: Number of hunted long tailed ducks in 2011 – 2015 SUM_LTDuck: Total number of hunted long tailed ducks in 2011-2015 Mean_LTDuc: An average number of hunted long tailed ducks in a year (hunted individuals/year) Notes: Notes regarding the data

  • The extraction of cod pressure layer is based on two datasets: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/7a1389b3-382a-487f-8888-ac45c94c5a97 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). 2. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/debeafcd-948b-4455-88ae-7a3d1618f5a8 from ICES recreational fisheries reports for 2011-2016, reported per country (only coastal areas included). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² were calculated for both data sets and the results were converted to 1 km x 1 km grid cells. The layers were summed together, log-transformed and normalised to produce the final pressure layer on extraction of cod. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • This dataset shows the sub-basins of the Baltic Sea which are used for Baltic Sea Pollution Load Compilation 6.

  • This dataset contains modelled small vessel fuel consumption. This describes the geographical distribution of the fuel used by small boats. The total fuel consumption was modelled in SHEBA project to study emissions from pleasure boats. The model is based on locations and berths in marinas and leisure harbours, AIS information, statistics on fuel sale and extensive survey. For 2018 version the layer is weighted with depth, log-transformed and normalised (please see below). This dataset was also used on HOLAS 3.

  • The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.

  • Data shows the extent of land claim (permanent or temporary establishments of the sea) and the type of the construction. The data was made available by HELCOM Contracting Parties in response to data request. The data was received from Denmark, Finland, Sweden and Poland. The activity was declared as not relevant in Germany, Estonia, Latvia and Lithuanian. From Russia no data was reported. Attribute specification and units: Country: Country Type: Type of construction (land claim) Type_spec: More specified information about the type of land claim Year: Year of construction Estimated: Estimated year of construction from the identification information (environmental permit) given by the country in question Length: Length of the land reclamation (m) Area: Area (km2) of the land claim X_lon: Original Longitude coordinate point (for the data that has been transformed from points into lines) Y_Lat: Original latitude coordinate point (for the data that has been transformed from points into lines)

  • Eutrophication, caused by excess input of nutrients, is one of the main threats affecting the Baltic Sea marine environment. Nutrients enter the Baltic Sea as waterborne (riverine inputs from the catchment area and direct discharges from point and diffuse sources in coastal areas) and airborne (atmospheric deposition) inputs. In 2007 HELCOM adopted a nutrient reduction scheme which is based on maximum allowable nutrient inputs (MAI) to reach "good environmental status" and country-wise nutrient reduction targets (CART) to share the burden of reducing nutrient pollution to the sea (HELCOM Baltic Sea Action Plan). Monitoring of nutrient inputs to the sea is important for assessing progress of countries towards their CART and to evaluate the effectiveness of measures to reduce pollution. This dataset displays nutrient loading as produced for http://www.helcom.fi/baltic-sea-trends/indicators/inputs-of-nutrients-to-the-subbasins HELCOM Core indicator: Inputs of nutrients to the subbasins based on HELCOM PLC data. Green colour of PLC subbasin indicates that inputs during 2016 were lower than MAI, red colour when they were higher, while yellow indicates that when taking into account the statistical uncertainty of input data it is not possible to determine whether MAI was fulfilled. The dataset contains following attributes: Basin: Name of PLC Subbasin Maximum allowable nutrient input: Maximum allowable nitrogen input for the subbasin (tons/year) N input including statistical uncertainty 2016: the average nitrogen input during 2016 including statistical uncertainty (tons/year) N input 2016 including statistical uncertainty in % of MAI: proportion of normalized nitrogen input during 2016 compared to MAI (%) Classification of achieving MAI: Classification of achieving MAI is given in colours: green=MAI fulfilled, yellow= fulfilment is not determined due to statistical uncertainty, and red=MAI not fulfilled.

  • This layer is based on data from the BIAS project representing ambient underwater noise, modelled into a 0.5 km x 0.5 km grid, and representing sound pressure levels at 1/3 octave bands of 125 Hz exceeded at least 5% of the time. Measured and modelled acoustic data is provided as Sound Pressure Level (SPL). The time period for the data is annual values for year 2014. The selected depth interval is 0 m – bottom to represent the ambient underwater noise in the whole water column. The data were normalized setting level 0 at 92 db re 1µPa and level 1 at 127 db re 1µPa.

  • This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.