From 1 - 10 / 78
  • Potential effect of continuous noise to mobile species assesses the cumulative potential effect of continuous noise on mobile species and their presence in the HELCOM area. The evaluation is based on the pressure layer on input of continuous noise, combined with information on the distribution of 15 mobile species and their habitats. The thematic analyses on the potential effect of continuous noise to mobile species is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets.

  • The Baltic Sea Pressure index (BSPI) assesses the potential cumulative pressures in the Baltic Sea. The BSPI is based on georeferenced datasets of human activities (28 datasets), pressures (17 datasets) and uses the average sensitivity of each pressure layer to all ecosystems to weigth the pressure. Cumulative pressures are calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, where the BSPI presents the full cumulative pressure assessment where all pressures are included. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • This dataset contains modelled small vessel fuel consumption. This describes the geographical distribution of the fuel used by small boats. The total fuel consumption was modelled in SHEBA project to study emissions from pleasure boats. The model is based on locations and berths in marinas and leisure harbours, AIS information, statistics on fuel sale and extensive survey. For 2018 version the layer is weighted with depth, log-transformed and normalised (please see below). This dataset was also used on HOLAS 3.

  • This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.

  • The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.

  • This map shows the distribution and abundance of harbour seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The abundance of harbour porpoise is presented using 4 abundance classes. The classification is based on expert consultation and information from scientific literature (e.g. Sveegaard et al. 2011, Viquerat et al. 2014). The class borders are defined by expert opinion and generalizing the data gathered and modelled in SAMBAH project. For the Baltic Proper the SAMBAH results have been used to delineate the class borders: 20% probability of detection during May-October has been used to define the area of “common occurrence and reproduction”, and the 20% probability of detection during November-April has been used to define the “regular occurrence, no regular reproduction” area. Please note: The applied spatial scale includes lagoons and estuaries of the inner coastal waters (e.g. Szczecin Lagoon, Jasmund lagoon) where harbour porpoises do not or only exceptionally occur unlike the map suggests.

  • Baltic International Trawl Survey (BITS) data (2011-2016) from ICES DATRAS database was used as a base to create a map of cod relative abundance (quarter 1 data, CPUE values per ICES subdivision). Cod = 30cm was included. For ICES rectangles surveyed by BITS, values shown are the mean CPUE per ICES subdivision based on BITS data, average for 2011-2016. For ICES rectangles not surveyed by BITS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = CPUE according to BITS in the ICES rectangle with highest landings. ICES rectangles outside the BITS survey area with no reported cod landings were given the value 0. Values were first log transformed and then normalized.

  • Esker islands (according to Habitats Directive Annex I) are glaciofluvial islands consisting mainly of relatively well sorted sand, gravel or less commonly of till. Also their underwater parts are included in the habitat. The distribution map is based on data submission by HELCOM contracting parties. Only Sweden and Finland reported occurrences of esker islands. Only underwater parts are included in the datasets. The data is based on modelling and GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.