TIFF
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Scale
Resolution
-
Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.
-
This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.
-
Distribution of Fucus sp. based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Fucus were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (Fucus points and the raster presenting predicted presence of Fucus) were generalized to 5km x 5km grid cells.
-
The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.
-
The seals' distribution maps show the distribution and abundance of grey, harbour and ringed seals across the Baltic Sea. The ecosystem component maps on mammals' distribution were drafted by EG MAMA harbour porpoise and seal distribution teams. The maps were prepared as expert-derived distribution categories to be used in the HELCOM Third Holistic Assessment of the Ecosystem health of the Baltic Sea.
-
Summary Model results for the distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance Description This dataset shows model results forthe distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance. From an ecological point of view, available light is one of the primary physical parameters influencing and structuring the biological communities in the marine environment, as it is the driving force behind the primary production by providing the energy for the photosynthesis - energy that ultimately is transferred to other organisms not capable of photosynthesis. The depth of the photic zone is traditionally defined, for benthic plants, as the depth where 1% of the surface irradiance (as measured just below the water surface) is available for photosynthesis. Only two intervals based on light regime were used in the dataset, because they reflect the significant ecological difference between the shallow water depth with the presence of submerged aquatic vegetation, and the deeper waters where fauna (and bacteria) dominate diversity of species, abundance, and biomass. The intervals are: I. The photic zone (where at least 1% of the available light touches the seabed). II. The non-photic zone.The measurements of Secchi Depth used for producing this dataset are not evenly distributed and some areas in the Baltic Proper, Gulf of Riga and southern Baltic are not well covered.
-
The extraction of cod pressure layer is based on two datasets: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/7a1389b3-382a-487f-8888-ac45c94c5a97 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). 2. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/debeafcd-948b-4455-88ae-7a3d1618f5a8 from ICES recreational fisheries reports for 2011-2016, reported per country (only coastal areas included). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² were calculated for both data sets and the results were converted to 1 km x 1 km grid cells. The layers were summed together, log-transformed and normalised to produce the final pressure layer on extraction of cod. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mud” includes classes “Fine mud”, “Sandy mud” and “Mud to sandy mud” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.
-
Mudflats and sandflats not covered by seawater at low tide (according to Habitats Directive Annex I) are often devoid of vascular plants, usually coated by blue algae and diatoms. They are of particular importance as feeding grounds for wildfowl and waders. The distribution map is based on data submission by HELCOM contracting parties. Only Denmark, Germany and Estonia reported occurrences of mudflats and sandflats. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.
-
Summary This dataset shows model results for the average bottom temperature in the Baltic region in the plant growth season from April to September. Description This dataset shows model results for the average bottom temperature in the Baltic region in the plant growth season from April to September.
HELCOM Metadata catalogue