From 1 - 10 / 78
  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral sand” includes classes “Sand” and “Muddy sand” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Submarine structures made by leaking gases (according to Habitats Directive Annex I) are also known as “bubbling reefs”. These formations support a zonation of diverse benthic communities consisting of algae and/or invertebrate specialists of hard marine substrates different to that of the surrounding habitat. The distribution map is based on data submission by HELCOM contracting parties. Only Sweden and Denmark reported occurrences of submarine structures made by leaking gases.

  • The Baltic Sea Pressure index (BSPI) assesses the potential cumulative pressures in the Baltic Sea. The BSPI is based on georeferenced datasets of human activities (28 datasets), pressures (17 datasets) and uses the average sensitivity of each pressure layer to all ecosystems to weigth the pressure. Cumulative pressures are calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, where the BSPI presents the full cumulative pressure assessment where all pressures are included. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • Lagoons are expanses of shallow coastal waters, wholly or partially separated from the sea by sandbanks or shingle, or by rocks. Salinity may vary from brackish water to hypersalinity depending on rainfall, evaporation and addition of fresh seawater from storms, temporary flooding, or tidal exchange. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.

  • This map shows the distribution and abundance of harbour porpoise across the Baltic Sea. The abundance of harbour porpoise is presented using 4 abundance classes. The classification is based on expert consultation and information from scientific literature (e.g. Sveegaard et al. 2011, Viquerat et al. 2014). The class borders are defined by expert opinion and generalizing the data gathered and modelled in SAMBAH project. For the Baltic Proper the SAMBAH results have been used to delineate the class borders: 20% probability of detection during May-October has been used to define the area of “common occurrence and reproduction”, and the 20% probability of detection during November-April has been used to define the “regular occurrence, no regular reproduction” area. Please note: The applied spatial scale includes lagoons and estuaries of the inner coastal waters (e.g. Szczecin Lagoon, Jasmund lagoon) where harbour porpoises do not or only exceptionally occur unlike the map suggests.

  • This dataset is the first dedicated SMOS Sea Surface Salinity (SSS) product for the Baltic basin to enhance the science capabilities in the Baltic region and help to fill the gaps and grand challenges identified by the scientific community. These new product has been created under the funded ESA project ITT Baltic+ Salinity dynamics (4000126102/18/I-BG). This basin is one of the most challenging regions for the satellite SSS retrieval. The available EO-based SSS products are quite limited in terms of spatio-temporal coverage and quality. This is mainly due to technical limitations that strongly affect the brightness temperatures (TB), such as the high contamination by interferences and the contamination close to land and ice edges. Moreover, the sensitivity of TB to SSS changes is very low and dielectric models present limitations in this low salinity regime. Baltic+ L4 SSS product comprises 9 years (2011-2019) of daily maps at 0.05 degrees. A detailed explanation of the product algorithms and validation can be found at http://bec.icm.csic.es/doc/BEC_PD_SSS_Baltic_L3_L4.pdf and in the publication: Gonzalez-Gambau et al., “First SMOS Sea Surface Salinity dedicated products over the Baltic Sea“, Earth System Science Data, 2021 We present here the seasonal averaged Baltic+ L4 SSS products for the period 2011-2019. The daily Baltic+ L4 SSS products can be downloaded from the BEC FTP service (sftp://becftp.icm.csic.es) in the directory OCEAN/SSS/SMOS/Baltic/v1.0/L4/daily/