From 1 - 10 / 78
  • This map shows the distribution and abundance of grey seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • The extraction of herring data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/a3b67a55-7c1e-469e-b692-58c4e7b79279 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of herring. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.

  • Distribution of Charophytes (Chara spp., Nitella spp., Nitellopsis spp., Tolypella spp.) mainly based on data submission by HELCOM contracting parties. Submitted point data was originally gathered in national mapping and monitoring campaigns, or for scientific research. Also scientific publications were used to complement the data (in Curonian, Vistula and Szczechin lagoons, see reference list). Polygon data from Poland was digitized based on Polish Marine Atlas. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Charophytes) were generalized to 5km x 5km grid cells.

  • Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets.

  • Input of heat pressure dataset contains delta heat values from warm water discharge of - Discharge of warm water from nuclear power plants - Fossil fuel energy production. The Discharge of warm water from nuclear power plants was requested from HELCOM Contracting Parties. Average temperature change of the cooling water (°C) and amount of cooling water (m3) was used to calculate the heat load in TWh. No data on heat load was available for the Leningrad nuclear power plant; therefore the average heat load (TWh) of discharge of warm water from nuclear power plants was given. No heat load information was available for fossil fuel energy production sites. Heat load of 1 (TWh) was given to all production sites, based on average heat load of individual production site in Helsinki from recent years. 1 km buffer was used for both datasets with steep decline around the outlet. Overlapping areas were summed. Heat load from both layers were summed and the layer was normalized.

  • Potential cumulative impacts of eutrophication and hazardous substances assesses the cumulative potential effect of eutrophication and hazardous substances over all ecosystem components. The evaluation is based on the pressure layer on eutrophication and hazardous substances, combined with information on all ecosystem components (57 layers) included in SPIA for HOLAS 3. The thematic analyses is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.

  • Essential fish habitat (EFH) map on Potential spawning areas for sprat was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ Sprat (Sprattus sprattus) occurs in the entire Baltic Sea, and mainly in open sea areas. It is assessed as a single stock in the Baltic Sea within fisheries management. Sprat eggs are pelagic, and sprat spawning is well known from the deep basins in the central Baltic, where it typically occurs from February to August. Further north, spawning starts later in the year, and is less certain. Recent fisheries surveys indicate that sprat spawning does no longer occur in the Gulf of Finland. Sprat spawning areas were delineated using environmental variables due to lack of coherent field data across the Baltic Sea countries. “Potential sprat spawning areas” were delineated as areas with salinity > 6 and water depth > 30 m, but for the Arcona basin depth > 20 m was used (Grauman, 1980, Bauman et al. 2006, Voss et al. 2012). “High probability spawning areas” were delineated for areas deeper than 70 m. Stock: Sprat in subdivisions 22-32 (ICES) EFH type: Potential spawning areas Approach: Environmental envelope, corrected for areas 20-40 m south of Bornholm. Variables and thresholds: Potential spawning area: Depth > 30 m, Salinity > 6 (annual average) High probability spawning area: Depth >70 m, Salinity > 6 (annual average) Quality: The map is based on literature and environmental variables, not actual data on sprat spawning. The map might overestimate the spawning area west and north of Gotland. The data layers on environmental variables are based on modelling. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References: - Baumann, H, H Hinrichsen, C Mollmann, F Koster, A Malzahn, and A Temming (2006) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) in tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Canadian Journal of Fisheries and Aquatic Science 63:2191-2201 - Grauman GB (1980) Long term changes in the abundance data of eggs and larvae of sprat in the Baltic Sea. Fisheries research in the Baltic Sea, Riga. 15:138-150 (in Russian) - HELCOM (2018) Outcome of the regional expert workshop on essential fish habitats, organized by Pan Baltic Scope project and HELCOM (HELCOM Pan Baltic Scope EFH WS 1-2018) - Voss R, MA Peck, HH Hinrichsen, C Clemmesen, H Baumann, D Stepputis, M Bernreuther, JO Schmidt, A Temming, and FW Köster (2012) Recruitment processes in Baltic sprat - A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography 107:61-79

  • This dataset contains modelled small vessel fuel consumption. This describes the geographical distribution of the fuel used by small boats. The total fuel consumption was modelled in SHEBA project to study emissions from pleasure boats. The model is based on locations and berths in marinas and leisure harbours, AIS information, statistics on fuel sale and extensive survey. For 2018 version the layer is weighted with depth, log-transformed and normalised (please see below). This dataset was also used on HOLAS 3.