From 1 - 10 / 78
  • This map shows the distribution and abundance of harbour seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • This map shows the distribution and abundance of grey seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • 'Availability of deep water habitat, based on occurrence of H2S' layer describes the suitability of the bottom areas for the Baltic Sea biota, with regard to oxygen conditions of the near bottom waters. The data used to produce the layer was received from Leibniz-Institut für Ostseeforschung Warnemünde (IOW): - areas (polygons) with hydrogen sulfide (H2S) based on point measurements and modelling. Five time periods / year, for years 2011-2016 (altogether 30 layers). The polygons were converted to raster layers in a way, that for each time period (6 years, 5 time periods each year), areas with H2S got a value 0, other areas got the value 1. All layers were summed, (representing 6 years, 5 time periods each year, maximum value 30) and data was normalised. For more detailed information on the data used, please see Feistel et al. 2016.

  • The map of sprat relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016, (ICES WGBIFS reports), reported as millions of sprat per ICES rectangle. The BIAS surveys cover almost the whole area where sprat is commonly encountered. Outside BIAS area, sprat landings data was used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2015). MAX-value = millions of sprat according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported sprat landings were given the value 0. The abundance values / ICES rectangle were divided by the area of the rectangle to obtain values per 1km2, and then converted to 1 km x 1km grid cells. Values were first log transformed and then normalised.

  • Sandbanks (according to Habitats Directive Annex I) are areas elevated from their surroundings that consist mainly of sand, but where cobbles and boulders can occur. Distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling, GIS analysis and only limited ground-truthing has been carried out. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).

  • Mudflats and sandflats not covered by seawater at low tide (according to Habitats Directive Annex I) are often devoid of vascular plants, usually coated by blue algae and diatoms. They are of particular importance as feeding grounds for wildfowl and waders. The distribution map is based on data submission by HELCOM contracting parties. Only Denmark, Germany and Estonia reported occurrences of mudflats and sandflats. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: - Bridges (2 m) - Cables (operational; 1,5 m) - Coastal defence and flood protection (area of polygon, 50 m for lines) - Dredging (capital dredging, Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 points) - Extraction of sand and gravel - Finfish mariculture (150 m) - Harbours (polygon with 200 m buffer) - Land claim (area of polygon, 30m buffer for lines) - Marinas and leisure harbours (200 m) - Oil platforms (25 m) - Oil terminals and refineries (200 m) - Pipelines (operational; 15 m) - Shellfish mariculture (area of polygon, 150 m points) - Watercourse modification (50 m) - Wind turbines (operational; 30m point location of turbine) The datasets were first processed separately covering the whole Baltic Sea and then merged into one uniform data layer and minimizing the effect of overlapping areas. Polygon areas were clipped with coastline to remove buffered areas that reached to land.

  • The extraction of cod pressure layer is based on two datasets: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/7a1389b3-382a-487f-8888-ac45c94c5a97 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). 2. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/debeafcd-948b-4455-88ae-7a3d1618f5a8 from ICES recreational fisheries reports for 2011-2016, reported per country (only coastal areas included). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² were calculated for both data sets and the results were converted to 1 km x 1 km grid cells. The layers were summed together, log-transformed and normalised to produce the final pressure layer on extraction of cod. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral sand” includes classes “Sand” and “Muddy sand” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.