TIFF
Type of resources
Available actions
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Scale
Resolution
-
Distribution of Fucus sp. based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Fucus were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (Fucus points and the raster presenting predicted presence of Fucus) were generalized to 5km x 5km grid cells.
-
This dataset is built from the following Human activities dataset: • Hunting of seals The number of hunted seals (see separate metadata on hunting of seals) were averaged over 2011-2014 separately for grey seals, ringed seals and harbour seals (e.g. number of hunted grey seals / year). In Sweden the numbers of hunted grey seals in 2011 (74) were reported for the whole Swedish territorial waters), but here the numbers were set only to Swedish Gulf of Bothnia, as corresponding numbers were reported there in 2013 (75) and 2014 (65). The area of the reporting unit was used to calculate the number of hunted seals / km2 and the data was converted to 1km x 1km grid. For the Baltic Sea Impact Index, the values were normalized. Normalized value 0.5 was set to the level of quota for hunting of seal species in the Baltic Sea. The following quotas for hunting were used: Grey seal: 2000, Ringed seal: 350, Harbour seal 230.
-
Summary The following 6 categories of annual mean salinity were applied delineating the Kattegat and the Baltic Sea into regions with differences in salinity regime (fig. 15): I. Oligohaline I (< 5psu). II. Oligohaline II (5 - 7.5psu). III. Mesohaline I (7.5 - 11psu). IV. Mesohaline II (11 - 18psu). V. Polyhaline (18 - 30psu). VI. Euhaline (>30psu). Description This dataset was produced by NERI, Denmark, for the BSR INTERREG IIIB project BALANCE. Due to the stratification in the Baltic Sea it was decided to use bottom salinity for the development of the benthic marine landscapes and difference in surface to bottom salinity for the pelagic landscapes. The following 6 categories of annual mean salinity were applied delineating the Kattegat and the Baltic Sea into regions with differences in salinity regime (fig. 15): I. Oligohaline I (< 5psu). II. Oligohaline II (5 - 7.5psu). III. Mesohaline I (7.5 - 11psu). IV. Mesohaline II (11 - 18psu). V. Polyhaline (18 - 30psu). VI. Euhaline (>30psu).
-
Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).
-
Distribution of Charophytes (Chara spp., Nitella spp., Nitellopsis spp., Tolypella spp.) mainly based on data submission by HELCOM contracting parties. Submitted point data was originally gathered in national mapping and monitoring campaigns, or for scientific research. Also scientific publications were used to complement the data (in Curonian, Vistula and Szczechin lagoons, see reference list). Polygon data from Poland was digitized based on Polish Marine Atlas. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Charophytes) were generalized to 5km x 5km grid cells.
-
Essential fish habitat (EFH) map on Potential spawning areas for sprat was prepared in PanBalticScope project (co-founded by the European Maritime and Fisheries Fund of the European Union) http://www.panbalticscope.eu/ Sprat (Sprattus sprattus) occurs in the entire Baltic Sea, and mainly in open sea areas. It is assessed as a single stock in the Baltic Sea within fisheries management. Sprat eggs are pelagic, and sprat spawning is well known from the deep basins in the central Baltic, where it typically occurs from February to August. Further north, spawning starts later in the year, and is less certain. Recent fisheries surveys indicate that sprat spawning does no longer occur in the Gulf of Finland. Sprat spawning areas were delineated using environmental variables due to lack of coherent field data across the Baltic Sea countries. “Potential sprat spawning areas” were delineated as areas with salinity > 6 and water depth > 30 m, but for the Arcona basin depth > 20 m was used (Grauman, 1980, Bauman et al. 2006, Voss et al. 2012). “High probability spawning areas” were delineated for areas deeper than 70 m. Stock: Sprat in subdivisions 22-32 (ICES) EFH type: Potential spawning areas Approach: Environmental envelope, corrected for areas 20-40 m south of Bornholm. Variables and thresholds: Potential spawning area: Depth > 30 m, Salinity > 6 (annual average) High probability spawning area: Depth >70 m, Salinity > 6 (annual average) Quality: The map is based on literature and environmental variables, not actual data on sprat spawning. The map might overestimate the spawning area west and north of Gotland. The data layers on environmental variables are based on modelling. Attribute information: Raster value representing no spawning (0), potential spawning area (0.5) and high probability spawning area (1). References: - Baumann, H, H Hinrichsen, C Mollmann, F Koster, A Malzahn, and A Temming (2006) Recruitment variability in Baltic Sea sprat (Sprattus sprattus) in tightly coupled to temperature and transport patterns affecting the larval and early juvenile stages. Canadian Journal of Fisheries and Aquatic Science 63:2191-2201 - Grauman GB (1980) Long term changes in the abundance data of eggs and larvae of sprat in the Baltic Sea. Fisheries research in the Baltic Sea, Riga. 15:138-150 (in Russian) - HELCOM (2018) Outcome of the regional expert workshop on essential fish habitats, organized by Pan Baltic Scope project and HELCOM (HELCOM Pan Baltic Scope EFH WS 1-2018) - Voss R, MA Peck, HH Hinrichsen, C Clemmesen, H Baumann, D Stepputis, M Bernreuther, JO Schmidt, A Temming, and FW Köster (2012) Recruitment processes in Baltic sprat - A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography 107:61-79
-
Potential cumulative impacts of eutrophication and hazardous substances assesses the cumulative potential effect of eutrophication and hazardous substances over all ecosystem components. The evaluation is based on the pressure layer on eutrophication and hazardous substances, combined with information on all ecosystem components (57 layers) included in SPIA for HOLAS 3. The thematic analyses is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.
-
The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). Species distribution modelling studies have shown the importance of suitable environmental conditions for pikeperch recruitment. Due to lack of coherent data on pikeperch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for pikeperch. The pikeperch recruitment area presented on the map is mainly delineated by selecting areas where depth < 5 m, logged exposure < 5, salinity < 7 PSU, Secchi depth < 2 m and distance to deep (10m) water < 4km. The threshold values have been obtained from literature (Veneranta et al. 2011, Bergström et al. 2013, Sundblad et al. 2013, Kallasvuo et al. 2016). Temperature, although important for pikeperch, was left out due to high variation in timing of suitable spawning temperatures across the Baltic Sea. In Finnish coastal waters, a national pikeperch model (Kallasvuo et al. 2016) has been used, with very suitable areas for pikeperch generalized to 1 km grid. In Sweden, the areas delineated by environmental variables have been complemented with information from national interview survey (Gunnartz et al. 2011) as well as expert opinion.
-
The extraction of herring data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/a3b67a55-7c1e-469e-b692-58c4e7b79279 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of herring. Please see "lineage" section below for further details on attributes, data source, data processing, etc.
-
Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.