From 1 - 10 / 78
  • Summary Model results for the distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance Description This dataset shows model results forthe distribution of where at least 1% available light touches the seabed (the photic zone) and non-photic zone in the Baltic Sea based on 1% mean annual irradiance. From an ecological point of view, available light is one of the primary physical parameters influencing and structuring the biological communities in the marine environment, as it is the driving force behind the primary production by providing the energy for the photosynthesis - energy that ultimately is transferred to other organisms not capable of photosynthesis. The depth of the photic zone is traditionally defined, for benthic plants, as the depth where 1% of the surface irradiance (as measured just below the water surface) is available for photosynthesis. Only two intervals based on light regime were used in the dataset, because they reflect the significant ecological difference between the shallow water depth with the presence of submerged aquatic vegetation, and the deeper waters where fauna (and bacteria) dominate diversity of species, abundance, and biomass. The intervals are: I. The photic zone (where at least 1% of the available light touches the seabed). II. The non-photic zone.The measurements of Secchi Depth used for producing this dataset are not evenly distributed and some areas in the Baltic Proper, Gulf of Riga and southern Baltic are not well covered.

  • Input of hazardous substances pressure layer is interpolated from CHASE Assessment tool concentration component. The contamination ratio values were calculated with CHASE Assessment tool for hazardous substances monitored in water, sediment and biota. Classified mean contamination ratio was used in the interpolation. Classification is based on the http://stateofthebalticsea.helcom.fi/about-helcom-and-the-assessment/downloads-and-data/. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). For perch, species distribution modelling studies (Snickars et al. 2010, Bergström et al. 2013, Sundblad et al. 2013) have shown the importance of suitable environmental conditions for reproduction. Due to lack of coherent data on perch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for perch. The distribution area or perch recruitment is delineated by selecting areas where depth < 4 m (For Danish waters < 3 m), logged exposure < 5 (exposure model described in Isæus 2004), and salinity < 10 PSU. The threshold values have been obtained from literature (Snickars et al. 2010, Bergström et al. 2013, Skovrind et al. 2013, Sundblad et al. 2013). Relatively “loose” thresholds have been used, to rather overestimate than underestimate the recruitment area (precautionary approach). Along the Finnish coastline a national model has been used (Kallasvuo et al. 2016), with suitable environments for perch recruitment generalized to 1 km x 1 km grid.

  • Potential effect of continuous noise to mobile species assesses the cumulative potential effect of continuous noise on mobile species and their presence in the HELCOM area. The evaluation is based on the pressure layer on input of continuous noise, combined with information on the distribution of 15 mobile species and their habitats. The thematic analyses on the potential effect of continuous noise to mobile species is calculated for each assessment unit (1 km2 grid cells) and the data set covers the time period 2016-2021. Spatial Pressure and Impact Assessment (SPIA) is the framework for assessing spatial and cumulative pressures and impacts in HOLAS 3, and this analyses present a thematic assessment including only a certain subset of layers. The framework also includes results for the Baltic Sea Impact Index (full cumulative impact assessment), Baltic Sea Pressure Index (full cumulative pressure assessment), and other thematic assessments where a subset of pressure and ecosystem layers are used. For more info please - visit the HOLAS 3 website (http://stateofthebalticsea.helcom.fi/) - download the report thematic assessment of spatial distribution of pressures and impacts 2016-2021 (https://helcom.fi/post_type_publ/holas3_spa) - or check out the HELCOM SPIA online tool to make calculations for any desired combination of pressures and ecosystem layers (https://maps.helcom.fi/website/bsii/). Please scroll down to "Lineage" for a more detailed description of the methodology.

  • The extraction of Sprat data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/1fb1bd2d-8dff-493a-9ed3-a278aec8f371 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of Sprat. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral sand includes classes “Sand” and “Muddy sand” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • The map of herring relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016 (ICES WGBIFS reports), reported as millions of herring / ICES rectangle. Also herring landings data were used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2016). MAX-value = millions of herring according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported herring landings were given the value 0. The relative abundance values in each ICES rectangle were divided by the area of the rectangle to obtain values per 1km2. If the values in small coastal ICES rectangles (outside BIAS area) became unrealistically large due to high herring landings, the value of the neighboring rectangle was given. The final layer was converted to 1 km x 1km grid cells. Values were first log transformed and normalized.

  • Concentration of phosphorus pressure layer is interpolated from annual seasonal average of total phosphorus measurements from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).

  • Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).

  • Summary Model results of the annual mean bottom current velocity (m/s). Description This dataset shows model results of the annual mean bottom current velocity (m/s). Data source, NERI/Denmark. Currents in the sea can be generated by many different parameters, among which are: I. Tidal motion II. Wind stress III. Density difference due to differences in salinity or temperature IV. Seismic activity and motion of the earth In near shore regions, the wave-induced along shore currents are the dominating currents, whereas in offshore regions, a combination of tidal and meteorological forces is the dominating current generating parameters. Near the sea bottom the friction of the current flow forms a turbulent layer, termed boundary layer, over the seabed. The thickness of this layer ranges from few meters up to several tens of meters. Within this layer the current speed increases nonlinearly with the height above the seabed, being zero at the seabed and maximum at the top of the layer. The variation of the current speed with height above the seabed is called current velocity profile.