From 1 - 10 / 78
  • Mudflats and sandflats not covered by seawater at low tide (according to Habitats Directive Annex I) are often devoid of vascular plants, usually coated by blue algae and diatoms. They are of particular importance as feeding grounds for wildfowl and waders. The distribution map is based on data submission by HELCOM contracting parties. Only Denmark, Germany and Estonia reported occurrences of mudflats and sandflats. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral hard substrate” includes classes “Rock and other hard substrate” and “Coarse substrate” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). For perch, species distribution modelling studies (Snickars et al. 2010, Bergström et al. 2013, Sundblad et al. 2013) have shown the importance of suitable environmental conditions for reproduction. Due to lack of coherent data on perch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for perch. The distribution area or perch recruitment is delineated by selecting areas where depth < 4 m (For Danish waters < 3 m), logged exposure < 5 (exposure model described in Isæus 2004), and salinity < 10 PSU. The threshold values have been obtained from literature (Snickars et al. 2010, Bergström et al. 2013, Skovrind et al. 2013, Sundblad et al. 2013). Relatively “loose” thresholds have been used, to rather overestimate than underestimate the recruitment area (precautionary approach). Along the Finnish coastline a national model has been used (Kallasvuo et al. 2016), with suitable environments for perch recruitment generalized to 1 km x 1 km grid.

  • This dataset shows sea bottom risk areas for mines sunk in the World War II. The big areas in Danish and German areas as well as in the Gdansk Bay are British flight mine areas. This dataset was created by the HELCOM Expert Group on Environmental Risks of Hazardous Submerged Objects (SUBMERGED). SUBMERGED works to compile and assess information about all kinds of hazardous objects and assess the associated risks. The dataset was provided by Gunnar Möller (Mine Warfare Data Center (C MWDC), 4th Naval Warfare Flottilla, Berga, Sweden) for the HELCOM Maritime Assessment published in 2018.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “circalittoral mixed substrate” includes classes “mixed sediment” of the original data, in the circalittoral zone. The original polygon maps have been converted to 1 km x 1 km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • The map of sprat relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016, (ICES WGBIFS reports), reported as millions of sprat per ICES rectangle. The BIAS surveys cover almost the whole area where sprat is commonly encountered. Outside BIAS area, sprat landings data was used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2015). MAX-value = millions of sprat according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported sprat landings were given the value 0. The abundance values / ICES rectangle were divided by the area of the rectangle to obtain values per 1km2, and then converted to 1 km x 1km grid cells. Values were first log transformed and then normalised.

  • Input of impulsive anthropogenic sound includes impulsive events from 2011-2016 • Seismic surveys (HELCOM-OSPAR Registry; national data call submissions as lines in the folder of data) • Explosions (HELCOM-OSPAR Registry) • Pile driving (HELCOM-OSPAR Registry) • Airguns (HELCOM-OSPAR Registry) For the different event types, numeric intensity value was used to represent the pressure as categorized in HELCOM-OSPAR Impulsive noise registry. All nationally reported seismic surveys were given intensity values “Very low” (0.25) - Very low (0.25) - Low (0.5) - Medium (0.75) - High (1) The impact distance has not been taken into account due to the different nature of separate datasets used for the pressure layer. We acknowledge that e.g. pile driving and airguns may impact up to 20 km from the source event. The spread of the sound wave depends on the sound frequency, water salinity, temperature and density.

  • Distribution of Fucus sp. based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Fucus were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (Fucus points and the raster presenting predicted presence of Fucus) were generalized to 5km x 5km grid cells.

  • This dataset is built from following Human activities datasets: • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/81c917ea-492d-48e2-9f00-e1bb7fe3e4fc • http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/4fcd51dd-b8be-4e83-8cad-37c566782e8f The game hunting of seabirds data (see separate metadata): The total number of hunted seabirds were averaged over 2011-2015 (number of hunted seabirds / year). The area of the reporting unit was used to calculate the number of hunted seabirds / km2 and the data was converted to 1km x 1km grid. The predator control of seabirds data (see separate metadata): The total number of hunted cormorants were averaged over 2011-2015 (number of hunted cormorants / year). The area of the reporting unit was used to calculate the number of hunted cormorants / km2 and the data was converted to 1km x 1km grid. The two datasets were first separately log transformed and then summed, to get the total value for each grid cell. Zero values were given to all grid cells with no reported seabird hunting activity. The layer was normalized.