From 1 - 10 / 52
  • The extraction of herring data set is based on: 1. http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/a3b67a55-7c1e-469e-b692-58c4e7b79279 for years 2011-2016 reported per ICES statistical rectangles (tonnes / ICES rectangle). Landing values were redistributed within each ICES rectangle by the c-square fishing effort data provided by ICES (all gears, 2011-2013). Tonnes / km² was calculated and the results were converted to 1 km x 1 km grid cells. The layer was log-transformed and normalised to produce the final pressure layer on extraction of herring. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mud” includes classes “Fine mud”, “Mud to sandy mud” and “Sandy mud” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Input of hazardous substances pressure layer is interpolated from CHASE Assessment tool concentration component. The contamination ratio values were calculated with CHASE Assessment tool for hazardous substances monitored in water, sediment and biota. Classified mean contamination ratio was used in the interpolation. Classification is based on the http://stateofthebalticsea.helcom.fi/about-helcom-and-the-assessment/downloads-and-data/. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Please see "lineage" section below for further details on attributes, data source, data processing, etc.

  • This layer is based on data from the BIAS project representing ambient underwater noise, modelled into a 0.5 km x 0.5 km grid, and representing sound pressure levels at 1/3 octave bands of 125 Hz exceeded at least 5% of the time. Measured and modelled acoustic data is provided as Sound Pressure Level (SPL). The time period for the data is annual values for year 2014. The selected depth interval is 0 m – bottom to represent the ambient underwater noise in the whole water column. The data were normalized setting level 0 at 92 db re 1µPa and level 1 at 127 db re 1µPa.

  • Potential cumulative impacts on benthic habitats is based on the same method than http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9477be37-94a9-4201-824a-f079bc27d097, but is focused on physical pressures and benthic habitats. The dataset was created based on separate analysis for potential cumulative impacts on only the benthic habitats, as these are particularly affected by physical pressures. In this case the evaluation was based on pressure layers representing http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ea0ef0fa-0517-40a9-866a-ce22b8948c88 and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/05e325f3-bc30-44a0-8f0b-995464011c82, combined with information on the distribution of eight broad benthic habitat types and five habitat-forming species (http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/363cb353-46da-43f4-9906-7324738fe2c3, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/f9cc7b2c-4080-4b19-8c38-cac87955cb91, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/264ed572-403c-43bd-9707-345de8b9503c, http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/822ddece-d96a-4036-9ad8-c4b599776eca and http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/ca327bb1-d3cb-46c2-8316-f5f62f889090). The potential cumulative impacts has been estimated based on currently best available data, but spatial and temporal gaps may occur in underlying datasets. Please scroll down to "Lineage" and visit http://stateofthebalticsea.helcom.fi/cumulative-impacts/ for more info.

  • This map shows the distribution and abundance of grey seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • This map shows the distribution and abundance of ringed seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • The map of sprat relative abundance is mainly based on Baltic International acoustic surveys (BIAS), years 2011-2016, (ICES WGBIFS reports), reported as millions of sprat per ICES rectangle. The BIAS surveys cover almost the whole area where sprat is commonly encountered. Outside BIAS area, sprat landings data was used to complement the data. For ICES rectangles surveyed by BIAS, values shown are the mean values per ICES rectangle based on BIAS data, average for 2011-2016. For ICES rectangles not surveyed by BIAS, values are calculated as: MAX-value x Weighting factor. The weighting factor is specific to each ICES rectangle, calculated as the ratio between the commercial landings in that rectangle and the commercial landings in the ICES rectangle with highest landings (based on averages for 2011-2015). MAX-value = millions of sprat according to BIAS in the ICES rectangle with highest landings. ICES rectangles outside the BIAS survey area with no reported sprat landings were given the value 0. The abundance values / ICES rectangle were divided by the area of the rectangle to obtain values per 1km2, and then converted to 1 km x 1km grid cells. Values were first log transformed and then normalised.

  • Broad-scale habitat maps for the Baltic Sea have been produced in the EUSeaMap project in 2016. For German and Estonian marine areas, national (more accurate) datasets were used. German data included both substrate and light information (division into infralittoral/circalittoral). Estonian data included only substrate and the division into light regimes was obtained from the EuSeaMap data. Here, the habitat class “infralittoral mixed substrate” includes classes “mixed sediment” of the original data, in the infralittoral zone. The original polygon maps have been converted to 1 km x 1km grid. The scale of the substrate data used in broad-scale habitat maps varies from 1:250 000 to 1:1M (data from EMODnet Geology). Coarser resolution data has been used in areas, where 1: 250 000 substrate data has not been available. Due to different scales used, the habitat classes may show different sized patterns in different areas.

  • Lagoons are expanses of shallow coastal waters, wholly or partially separated from the sea by sandbanks or shingle, or by rocks. Salinity may vary from brackish water to hypersalinity depending on rainfall, evaporation and addition of fresh seawater from storms, temporary flooding, or tidal exchange. The distribution map is based on data submission by HELCOM contracting parties. Most of the submitted data is based on modelling and/or GIS analysis. Data coverage, accuracy and the methods in obtaining the data vary between countries.