From 1 - 10 / 78
  • Concentration of nitrogen pressure layer is interpolated from annual seasonal average of total nitrogen concentrations from surface waters (0-10 m) extracted from ICES’s oceanographic database, database of Swedish Meteorological and Hydrological Institute, EEA’s Eionet database and Data from Gulf of Finland year 2014. The points were interpolated to cover the entire Baltic Sea with Spline with barriers interpolation method. Values were log-transformed and normalised (more detailed description below).

  • Distribution of Furcellaria lumbricalis based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Furcellaria were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research purposes. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. For Poland, only confirmed occurrence of Furcellaria were included (Slupsk bansk, Rowy reef and reef at Orlowo cliff). All data (Furcellaria points and the raster presenting predicted presence of Furcellaria) were generalized to 5km x 5km grid cells.

  • Summary Model results of the annual mean bottom current velocity (m/s). Description This dataset shows model results of the annual mean bottom current velocity (m/s). Data source, NERI/Denmark. Currents in the sea can be generated by many different parameters, among which are: I. Tidal motion II. Wind stress III. Density difference due to differences in salinity or temperature IV. Seismic activity and motion of the earth In near shore regions, the wave-induced along shore currents are the dominating currents, whereas in offshore regions, a combination of tidal and meteorological forces is the dominating current generating parameters. Near the sea bottom the friction of the current flow forms a turbulent layer, termed boundary layer, over the seabed. The thickness of this layer ranges from few meters up to several tens of meters. Within this layer the current speed increases nonlinearly with the height above the seabed, being zero at the seabed and maximum at the top of the layer. The variation of the current speed with height above the seabed is called current velocity profile.

  • The occurrence of suitable nursery habitats is crucial for maintaining fish populations (Sundblad et al. 2013). For perch, species distribution modelling studies (Snickars et al. 2010, Bergström et al. 2013, Sundblad et al. 2013) have shown the importance of suitable environmental conditions for reproduction. Due to lack of coherent data on perch spawning and nursery areas across the Baltic Sea countries, environmental variables were used in delineating potential recruitment areas for perch. The distribution area or perch recruitment is delineated by selecting areas where depth < 4 m (For Danish waters < 3 m), logged exposure < 5 (exposure model described in Isæus 2004), and salinity < 10 PSU. The threshold values have been obtained from literature (Snickars et al. 2010, Bergström et al. 2013, Skovrind et al. 2013, Sundblad et al. 2013). Relatively “loose” thresholds have been used, to rather overestimate than underestimate the recruitment area (precautionary approach). Along the Finnish coastline a national model has been used (Kallasvuo et al. 2016), with suitable environments for perch recruitment generalized to 1 km x 1 km grid.

  • Distribution of blue mussel based on data submission by HELCOM contracting parties. Mainly pointwise occurrences of Mytilus spp. were submitted, originally gathered in national mapping and monitoring campaigns, or for scientific research. Point data from Poland was digitized based on Polish Marine Atlas. From Lithuania, a polygon delineating reefs was used to present Mytilus occurrence. For Germany, point data was complemented with a model describing Mytilus biomass in the German marine area (Darr et al. 2014), where predicted biomasses > 1g dw/ m2 were included as presence. From Estonian waters, a predictive model was used (200m resolution), that was converted to presence/absence using minimized difference threshold (MDT) criteria. All data (points, polygon and the raster presenting predicted presence of Mytilus) were generalized to 5km x 5km grid cells.

  • This dataset is built from the following Human activities dataset: • Hunting of seals The number of hunted seals (see separate metadata on hunting of seals) were averaged over 2011-2014 separately for grey seals, ringed seals and harbour seals (e.g. number of hunted grey seals / year). In Sweden the numbers of hunted grey seals in 2011 (74) were reported for the whole Swedish territorial waters), but here the numbers were set only to Swedish Gulf of Bothnia, as corresponding numbers were reported there in 2013 (75) and 2014 (65). The area of the reporting unit was used to calculate the number of hunted seals / km2 and the data was converted to 1km x 1km grid. For the Baltic Sea Impact Index, the values were normalized. Normalized value 0.5 was set to the level of quota for hunting of seal species in the Baltic Sea. The following quotas for hunting were used: Grey seal: 2000, Ringed seal: 350, Harbour seal 230.

  • This map shows the distribution and abundance of grey seals across the Baltic Sea. The map was originally created for HELCOM Red list assessment of the Baltic Sea, using seal expert consultation. For the Baltic Sea Impact Index, the map was modified to represent four abundance classes, based on expert consultation. The map has been updated from the 1st version of HOLASII, based on expert consultation (HELCOM Seal EG).

  • Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.

  • Input of impulsive anthropogenic sound includes impulsive events from 2011-2016 • Seismic surveys (HELCOM-OSPAR Registry; national data call submissions as lines in the folder of data) • Explosions (HELCOM-OSPAR Registry) • Pile driving (HELCOM-OSPAR Registry) • Airguns (HELCOM-OSPAR Registry) For the different event types, numeric intensity value was used to represent the pressure as categorized in HELCOM-OSPAR Impulsive noise registry. All nationally reported seismic surveys were given intensity values “Very low” (0.25) - Very low (0.25) - Low (0.5) - Medium (0.75) - High (1) The impact distance has not been taken into account due to the different nature of separate datasets used for the pressure layer. We acknowledge that e.g. pile driving and airguns may impact up to 20 km from the source event. The spread of the sound wave depends on the sound frequency, water salinity, temperature and density.

  • The pressure oil slicks and spills is combination of following datasets: • Illegal oil discharges • Polluting ship accidents Illegal oil discharge data is based on airborne surveillance with remote sensing equipment in the Baltic Sea Area. The area of the detected spills in 2011–2016 was used to represent the pressure. The value of spills under 1km2 were directly given to grid cell, spills over 1km2 were buffered based on estimate spill area. For polluting ship accidents the reported oil spill volumes (m3) in years 2011-2015 were used for the pressure. Some polluting ship accidents spills were missing spilled oil volume, thus a mean of reported volumes was given to accidents with missing oil volume. Datasets were handled separately. Both layers were normalized, summed and normalized again to produce the “oil slicks and spills” pressure layer. Please see below for further details.