From 1 - 10 / 14
  • A vector grid in 2 x 2 km resolution showing model results of environmental impact caused by spill of soluble oil from ships of all sizes as g oil / km^2 weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental impact (g oil / km^2 weighted).

  • A vector grid in 2 x 2 km resolution showing model results of environmental damage caused by spill of soluble oil from ships with size less than 5000 t as incidents/million years weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental damage (Incidents/million years weighted).

  • A vector grid in 2 x 2 km resolution showing model results of environmental impact caused by spill of soluble oil from ships with size less than 5000 t as as g oil / km^2 weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental impact (g oil / km^2 weighted).

  • A vector grid in 2 x 2 km resolution showing model results of environmental damage caused by spill of soluble oil from ships of all sizes as incidents/million years weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental damage (Incidents/million years weighted).

  • A vector grid in 2 x 2 km resolution showing model results of environmental damage caused by spill of soluble oil from ships with size greater than 5000 t as incidents/million years weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental damage (Incidents/million years weighted).

  • A vector grid in 2 x 2 km resolution showing model results of environmental impact caused by spill of soluble oil from ships with size greater than 5000 t as as g oil / km^2 weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental impact (g oil / km^2 weighted).

  • Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets.

  • Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets. Detailed information about this pressure layer can be found in the indicator report.

  • A vector grid in 2 x 2 km resolution showing model results of environmental impact caused by spill of soluble chemicals from ships with size greater than 5000 t as g oil / km^2 weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental impact (g oil / km^2 weighted).

  • A vector grid in 2 x 2 km resolution showing model results of environmental damage caused by spill of soluble chemicals from ships with size less than 5000 t as incidents/million years weighted.This dataset has been produced by COWI (http://www.cowi.dk) for the BRISK project (Sub-regional risk of spill of oil and hazardous substances in the Baltic Sea, http://www.brisk.helcom.fi/). Fields: COL_NO (Dbl): Column ROW_NO (Dbl): Row WLoad (Dbl): Environmental damage (Incidents/million years weighted).