From 1 - 10 / 75
  • Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.

  • This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.

  • This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the source Name: source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Total annual Hg discharge: total annual discharge of Mercury Total annual Pb discharge: total annual discharge of Lead

  • Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: - Bridges (2 m) - Cables (operational; 1,5 m) - Coastal defence and flood protection (area of polygon, 50 m for lines) - Dredging (capital dredging, Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 points) - Extraction of sand and gravel - Finfish mariculture (150 m) - Harbours (polygon with 200 m buffer) - Land claim (area of polygon, 30m buffer for lines) - Marinas and leisure harbours (200 m) - Oil platforms (25 m) - Oil terminals and refineries (200 m) - Pipelines (operational; 15 m) - Shellfish mariculture (area of polygon, 150 m points) - Watercourse modification (50 m) - Wind turbines (operational; 30m point location of turbine) The datasets were first processed separately covering the whole Baltic Sea and then merged into one uniform data layer and minimizing the effect of overlapping areas. Polygon areas were clipped with coastline to remove buffered areas that reached to land.

  • This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the Lead source Name: Lead source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Report_data_Cd: reported data of cadmium Total annual Hg discharge: total annual discharge of Mercury Report_data_Hg: reported data of mercury Total annual Pb discharge: total annual discharge of Lead Report_data_Pb: reported data of lead Source: source of the input

  • Pressure layer combines all human activities that cause physical disturbance or damage to seabed. For several human activity datasets, spatial extents were given (table below). Buffers with decreasing value rates were applied to represent the impact distance of physical disturbance. The following human activities were combined into the physical disturbance layer; - Cables (under construction, 1 km buffer) - Coastal defence and flood protection (under construction, 500 m buffer) - Deposit of dredged material (500 m buffer for points and areas) - Dredging (maintenance) (500 m buffer for points and areas) - Extraction of sand and gravel (500 m buffer) - Finfish mariculture (1 km buffer) - Fishing intensity 2011-2016 average (subsurface swept area ratio) - Furcellaria harvesting - Pipelines (0,3 km buffer) - Recreational boating and sports - Shellfish mariculture - Shipping density - Wind farms (under construction) (1 km buffer) - Wind farms (operational) (0,1 km buffer) The human activity data sets were first processed separately covering the whole Baltic Sea and then summed together. In this integration, some data layers were down-weighted to arrive at a balanced pressure layer, as described below. High pressure intensity and/or slow recovery (weighting factor 1): Coastal defence and flood protection, Deposit of dredged material, Dredging, Extraction of sand and gravel and Fishing intensity Moderate to high (Weighting factor 0,8): Pipelines and Shipping density Moderate (Weighting factor 0,6): Finfish mariculture, Shellfish mariculture and Wind farms (under construction) Low to moderate (Weighting factor 0,4): Cables Low (Weighting factor 0,2): Maerl and Furcellaria harvesting, Recreational boating and sports and Wind farms (operational) Harbours and marinas were left out from the physical disturbance pressure to avoid double counting due to their representation in the shipping density and recreational boating and sports data sets.

  • This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the Cadmium source Name: Cadmium source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Total annual Hg discharge: total annual discharge of Mercury Total annual Pb discharge: total annual discharge of Lead

  • This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the municipal direct sources Name of WWTP: name of the municipal WWTP Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Water flow: water flow Total annual N load: Total annual N load Total annual P load: Total annual P load

  • The layer depicts the pressure of hazardous substances in the Baltic Sea, based on the data from the HOLAS 3 integrated hazardous substances assessment. The methodology utilizes the integrated status values available for each HELCOM assessment unit on level 3. The results are based on multiple hazardous substances groups integration, done through the CHASE tool. The integrated assessment assess the hazardous substances status in biota, water and sediment, and final result in based on the worst status. As the SPIA is carried out using a 1x1km grid and the Integrated hazardous substances is assessed on vector-based HELCOM assessment units, the vector data is rasterized. First, the vector data is rasterized to 100x100m resolution, and thereafter it is aggregated to 10x10km grid using a mean value. A 10 km grid is used in order to make the gradients between assessment units slightly smoother and finally values are converted to 1x1 km resolution. Please see "lineage" section below for further details.

  • This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the industrial direct source Name: name of the industrial site Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual N load: Total annual N load Total annual P load: Total annual P load