environmental impact
Type of resources
Topics
INSPIRE themes
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Resolution
-
This pressure dataset is derived from three human activities datasets - Urban land use (on land) - Recreational boating and sports (updated layer for 2018 version, please see separate http://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8c30e828-1340-4162-b7f9-254586ae32b6) - Bathing sites These data are described in more detail in separate fact sheets. Urban land use data was first converted to 1 km grid cells and expanded with 1 km. Thus, coastal urban areas extended also to the sea. These areas were given value 1 and other sea areas, value 0. Bathing sites (points) were converted to 1km grid and given value 1, rest of the sea areas were given value 0. Normalized recreational boating data was converted to 1 km grid cells. These three layers were summed to produce the layer (values from 0 to 3), after that the layer was normalized. Hunting and recreational fishing data were excluded from human disturbance layer, as they are mostly reported per country and would have resulted in overestimation of the actual pressure.
-
Pressure layer combines all human activities that cause changes to hydrological conditions. The human activities were presented as point data which were given spatial extents (given below). The pressure value was given as the proportion of the grid cell under the pressure. The following human activities were combined into the changes to hydrological conditions layer; - Hydropower dams (a 1km2 grid cell in the river estuary was selected) - Water course modification (1 km) - Wind turbines (operational, 0.3 km, linear decline) - Oil platforms (0.5 km, linear decline) The human activity datasets were first processed separately covering the whole Baltic Sea and then summed together and overlapping areas were dissolved to remove double counting. Attenuation gradients are assigned to each layer as described above. Area effected decreases when distance from avtivity increases. Layer was normalized.
-
This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the source Name: source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Total annual Hg discharge: total annual discharge of Mercury Total annual Pb discharge: total annual discharge of Lead
-
Physical loss pressure layer combines all human activities that cause physical loss of seabed. The pressure is given as area lost in each cell (km2). For the polygon datasets the area was assumed to be the lost area. For line and point datasets spatial extents were calculated with buffers (below in brackets). If no buffer extent is indicated, the data was reported as polygon. The human activities used for the physical loss pressure: Land claim - Area of polygon or 50 m buffer for points, 30m buffer for lines. Area of polygon - buffered line or point data, equals lost area. Watercourse modification - 50 m buffer. Area of polygon, buffered line or point data, equals lost area. Coastal defence and flood protection - 50 m buffer for lines, area of polygon. Area of polygon, buffered line or point data, equals lost area. Extraction of sand and gravel - Area of polygon. Area of polygon equals lost area. Dredging (capital) - Area of polygon or a 25/50 m buffer for <5000 m3 / >5000m3 sites. Area of polygon, buffered line or point data, equals lost area. Oil platforms - 25 m buffer. Buffered point data, equals lost area. Pipelines - 15 m buffer around cables with operational status. Area of polygon, buffered line or point data, equals lost area. Wind farms - 30 m buffer around each turbine with operational status. Buffered point data, equals lost area. Cables - 1.5 m buffer around cables with operational status. Buffered line data, equals lost area. Harbours - Polygon with 200 m buffer. Area of polygon, buffered line or point data, equals lost area. Marinas and leisure harbour - Point with 200 m buffer. Buffered point data, equals lost area. Bridges - 2 m buffer. Buffered line data, equals lost area. Finfish mariculture - 150 m buffer. Buffered point data, equals lost area. Shellfish mariculture - Area of polygon, 150 m buffer for points. Buffered point data, equals lost area. Activities are combined and potentially overlapping areas are removed. Dataset is clipped with coastline. Combined layer is intersected with 1 km grid to calculate % of area lost within a cell.
-
The layer depicts the pressure of hazardous substances in the Baltic Sea, based on the data from the HOLAS 3 integrated hazardous substances assessment. The methodology utilizes the integrated status values available for each HELCOM assessment unit on level 3. The results are based on multiple hazardous substances groups integration, done through the CHASE tool. The integrated assessment assess the hazardous substances status in biota, water and sediment, and final result in based on the worst status. As the SPIA is carried out using a 1x1km grid and the Integrated hazardous substances is assessed on vector-based HELCOM assessment units, the vector data is rasterized. First, the vector data is rasterized to 100x100m resolution, and thereafter it is aggregated to 10x10km grid using a mean value. A 10 km grid is used in order to make the gradients between assessment units slightly smoother and finally values are converted to 1x1 km resolution. Please see "lineage" section below for further details.
-
This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the aquaculture Producer: name of the producer Country: country in the BS catchment area Sub-basin: Baltic Sea PLC sub-basin Total annual N load: Total annual N load Total annual P load: Total annual P load
-
This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the Mercury source Name: Mercury source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Total annual Hg discharge: total annual discharge of Mercury Total annual Pb discharge: total annual discharge of Lead
-
This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the industrial direct source Name: name of the industrial site Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual N load: Total annual N load Total annual P load: Total annual P load
-
This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the source Name: source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Report_data_Cd: reported data of cadmium Total annual Hg discharge: total annual discharge of Mercury Report_data_Hg: reported data of mercury Total annual Pb discharge: total annual discharge of Lead Report_data_Pb: reported data of lead Source: source of the input
-
This dataset reflects spatial distribution of nutrients load and load of selected hazardous substances on the Baltic Sea from land based sources. The data, obtained through national monitoring programmes in 2014, were reported by Contracting Parties to HELCOM in the frame of HELCOM PLC-6 project and collected in the HELCOM Pollution Load Compilation (PLC-water) database (http://apps.nest.su.se/helcom_plus/). The reporting was organized in accordance with the HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water, http://www.helcom.fi/Lists/Publications/PLC-Water%20Guidelines.pdf). The dataset has been produced based on guidance by HELCOM PRESSURE and REDCORE Drafting Group. The dataset contains following attributes: Unique code: unique code of the Lead source Name: Lead source name Country: country in the BS catchment area PLC sub-basin: Baltic Sea PLC sub-basin Total annual Cd discharge: total annual discharge of Cadmium Total annual Hg discharge: total annual discharge of Mercury Total annual Pb discharge: total annual discharge of Lead